

Université Mohammed Premier

École Nationale des Sciences Appliquées

Oujda

End-of-Year Dissertation

Field : Sécurité Informatique et Cybersécurité

Defended on : 03/07/2024

Prepared by : ESSATAB Achraf

Binary Exploitation Technics, Evasion

and Mitigation

Supervised by:

M. M. A. KOULALI

1 Contents

Contents

Contents ... 1

Abstract .. 2

List of Tables and Figures: .. 3

General Introduction ... 5

Chapter 1 Reducing the level of abstraction .. 6

1.1 Introduction ... 6

1.2 C as a Procedural Language ... 7

1.3 Compilers and linkers’ roles in C software’s development process 8

1.3.1 What is the compiler’s job? ... 9

1.3.2 The linker’s job ... 10

1.3.3 Summary .. 11

1.4 Function Calls: From High-level Statement to Machine Instructions 12

1.4.1 Overview of x86-64 Machine Architecture .. 14

1.4.2 Overview of the Calling Conventions of System V ABI 17

1.4.3 The Stack Evolution During Function Calls ... 19

1.4.4 Concrete Example .. 23

1.5 Conclusion .. 32

Chapter 2 Functions Lacking Bounds Checking .. 33

2.1 Introduction ... 33

2.2 GNU C Library ... 33

2.3 Unsafe Functions: an Example of strcpy() ... 34

2.3.1 The Bug in Detail .. 35

2.3.2 Exploit: Arbitrary Code Execution .. 42

2.3.3 Mitigation: access restriction to the stack ... 43

2.3.4 Evasion: Code Reuse Attack ... 45

2.3.5 Mitigation: Stack Canaries ... 46

2.4 Alternative Functions: an Example of strncpy() ... 53

2.4.1 A proposed solution: Substituting the Flawed Function 54

2.5 Guidelines for secure programming .. 68

2.6 Conclusion .. 72

General conclusion and perspectives .. 73

References ... 74

2 Abstract

Abstract

The security of computer systems evolves over time through an ongoing conflict

between designers and attackers. Whenever an attack is discovered, there is a

great opportunity to enhance the security of computer systems by addressing the

cause of the attack, thus fortifying future systems against similar vulnerabilities

and implementing defenses in current systems.

This work begins by eliminating unnecessary abstractions that hinder the

understanding of software bugs threatening the safety of a memory region known

as the stack. After gaining insights on how high-level C language statements, and

especially the call construct, affect our memory region, this work will delve into

low-level details (such as assembly language) to demonstrate how the absence of

bounds checking in some glibc’s functions can alter the control flow of a program,

causing it to behave unexpectedly, when this flaw is exploited by malicious users.

Using the function strcpy() from the C standard library as an example, it will be

shown how careless usage of this function by programmers can lead to exploitable

bugs. The exploitation process used by attackers will be discussed. Subsequently,

the security measures designers implement to mitigate these exploits will be

examined, along with how attackers bypass these mitigations and the subsequent

countermeasures.

This work offers a solution to strengthen programs afflicted with this bug when

the source code of a vulnerable C program is unavailable. Additionally, guidelines

provided by the CERT Coordination Center at Carnegie Mellon University will be

presented to help prevent such vulnerabilities in the first place at the software

development phase.

3 List of Tables and Figures:

List of Tables and Figures:

Figure 1: Layers of abstraction…………………………………….………………………………………………..5

Figure 2: Function Prototype …………………………………….……………………………………………….…6

Figure 3: The compiler’s phases………………………………….………………………………………………..8

Figure 4: C program life cycle …………………………….……………………………………………………….11

Figure 5: A function call ……………………………………….……………………………………………………..12

Table 6: User-controlled x86-64 registers ……………………………………….….….…………………13

Table 7: Commonly used x86-64 instructions …………….…………………………………..………..15

Figure 8.a: Stack allocation in memory……….……………………………………………………………..18

Figure 8: Multiple stack frames, each per function ……………………………………….…………19

Figure 9: the stack after the call………………………………………………………………………………….20

Figure 10: Function f calls function g…………………………………………………………………….......21

Figure 11: The main function in assembly representation……………………………………….23

Figure 12: Function f in assembly representation………………………………………………..23

Figure 13: Function g in assembly representation…………………………………………….….23

Figure 14: Passing one argument…………………………………………………………………………24

Figure 15: The call instruction……………………………………………………………………..……….25

Figure 16: RBP register saved by the callee………………………………….…………………………..26

Figure 17: Indicating a new stack frame…………………..……………………….……………………..27

Figure 18: Passing integer return value…………………..……………………….………………………28

Figure 19: restoring the value of RBP……………………..……………………….……………………….29

Figure 20: The ret instruction…………………………………………….……………………….…………….30

Figure 21: The end of the call sequence…………………………………….……………………….…….30

Table 22: Popular vulnerable functions…………..……………………….……………………………….33

Figure 22: A program using strcpy……………………………………………….……………………………36

Figure 23: Corrupted caller’s stack frame…………………………………………………….………….37

Figure 24: Linux man page of strcpy……………………….……………………….……………………….38

Figure 25: A program invoking strcpy…………………………………………………….………………..39

Figure 26: Normal execution…………………………………..……………………….………………………39

4 List of Tables and Figures:

Figure 27: An execution with unintended input……………………….…………………………….39

Figure 28: Debugger view of the program……………………….………………………………………40

Figure 29: The corrupted return address…………………….……………………….………………….40

Figure 30: Segmentation Fault exception………………….……………………….…………………….40

Figure 31: Inner workings of shellcode exploit……………….……………………….………………41

Figure 32: Stack allocation using mmap…………………………………………….…………………….43

Figure 33: The memory layout of a running process…………………….…………………………44

Figure 34: Code reuse attack…………………………………………….……………………………………….45

Figure 35: Stack frame before the corruption…………………….……………………….………….47

Figure 36: Detected memory corruption………………….……………………….…………………….48

Figure 37: The vulnerable program………………….……………………….……………………………..63

Figure 38: Trampoline implementation…………………………………………….…………………….63

Figure 39: The main program before applying the patch process………………………..…64

Figure 40: The workings of the patched program…………….……………………………………..65

Figure 41: The assembly representation of printName before the patching pro-

cess…………………………………….……………………….……………………….……………………………………...66

Figure 42: A substituted call instruction…………………………………….……………………………..66

Figure 43: Executing the flawed program……………….……………………….……………………….67

Figure 44: Executing the patched program………………………………………………………………67

Table 45: Deprecated functions and their alternative……………….……………………………70

5 General Introduction

General Introduction

Abstractions are valuable tools in computer science; they enhance creativity

and accelerate the evolution of computer systems. However, they obscure the

underlying workings of computer systems, making it nearly impossible to understand

how software bugs are exploited by attackers, and hence how to develop robust

security countermeasures. Therefore, this work begins by attempting to strip away

fundamental abstractions related to the stack memory region using simple language.

After delving into the details underlying those abstractions, it will be easier to

understand how functions lacking bounds checking can lead to exploitation by

malicious users. We will examine the exploitation techniques used by attackers to

exploit the strcpy() function, to give a concrete example. The primary aim of an

exploitation technique is to alter the behavior of a program from its intended

functionality. We will also present examples of the countermeasures devised by

designers to thwart these exploits, the strategies attackers employ to bypass these

mitigations, and how these bypassing methods are countered by the development of

new security measures.

Software constitutes an essential component of any computer system, as it

dictates to the hardware the tasks to be performed. It can be executed directly on

the hardware, with restrictions [1], or interpreted by a specific runtime environment.

It is almost impossible to create software that contains no bugs; The number of bugs

is at least proportional to the size of the program [2], and not dependent on the

programming language choice. This project focuses on addressing bugs that

compromise the stack memory security in the context of applications developed in C

language.

6 Reducing the level of abstraction

Chapter 1 Reducing the level of abstraction

1.1 Introduction
As C is a procedural language, C applications are built of a set of functions.

Before delving into the issues surrounding the memory safety of a C program's stack,

it is crucial to comprehend the compilation process when functions call each other

and the role of the stack in this operation.

As computing hardware becomes faster and more powerful, software

applications become more complex and sophisticated. New generations of computer

systems spawn new generations of software that can do more powerful things than

previous generations. As the software gets more sophisticated, the job of developing

an application becomes more difficult. To keep the programmer from being quickly

overwhelmed, it is critical that the process of programming be kept as simple as

possible. Automating any part of this process (i.e., having the computer do part of

the work) is a welcomed enhancement in the history of computer science.

C is a compiled high-level language, the compilation is done by tools (prebuilt

software), which makes the developer more focused on his job, innovative, and

comfortable than programming with an assembler language.

The use of tools such as compilers and linkers also aids developers in

identifying and eliminating subtle programming errors, serving as an additional line

of defense against exploitable programming bugs.

 Figure 1: Layers of abstraction

C programming is considered the base for other programming languages,

which is why it is known as the mother language [3]. It is considered the mother

language of all modern programming languages because most of the compilers,

JVMs, Kernels, etc. are written in C language, and most of the programming

languages follow C syntax, for example, C++, Java, C#, etc.

7 Reducing the level of abstraction

The goal of this chapter is to comprehend the low-level intricacies inherent in

C language statements that render programming bugs related to stack memory

exploitable by attackers, as well as to understand how mitigation techniques

function. To achieve this goal, we will delve into the realm of assembly language

abstraction.

1.2 C as a Procedural Language
C [4] is an imperative, procedural language in the ALGOL tradition. It has a

static type system. In C, all executable code is contained within subroutines (also

called "functions"). Function parameters are passed by value, although arrays are

passed as pointers, i.e., the address of the first item in the array. Pass-by-reference is

simulated in C by explicitly passing pointers to the thing being referenced.

 C is an imperative procedural language, supporting structured programming,

lexical variable scope, and recursion, with a static type system. It was designed to be

compiled to provide low-level memory access and language constructs that map

efficiently to machine instructions, all with minimal runtime support. Despite its low-

level capabilities, the language was designed to encourage cross-platform

programming. A standards-compliant C program written with portability in mind can

be compiled for a wide variety of computer platforms and operating systems with

few changes to its source code.

A function is a named block of code that can be called from anywhere in the

program, basically by another function. This design is conceived to avoid repeating a

frequently used block of code in the binary (i.e., the executable) of the application.

A function in C can be called either with arguments or without arguments. These

functions may or may not return values to the calling functions. Hence the function

prototype of a function in C is as below:

 Figure 2: Function Prototype

A parameter, if exists, is either a variable passed by value, by address (e.g., pointer to

the variable), or a constant value.

8 Reducing the level of abstraction

A function in C can return either a constant value, the value of a variable accessible

by that function (i.e., in the function’s scope), or a memory address.

1.3 Compilers and linkers’ roles in C software’s development

process
High-level languages can be classified into two categories: Compiled languages

and interpreted languages.

C is a compiled language; A compiled language is converted into machine code so

that the processor can execute it. An interpreted language on the other hand is a

language executed by an interpreter (a software), the interpreter executes

instructions directly without earlier compiling a program into machine language.

Compiled programs run faster than interpreted programs because there is no

interpretation overhead.

To inspect at a low level how procedure calls get translated to machine language and

to set the stage for the stack memory: the core concept of this work. This part

discusses, in a high level of detail, the process of converting compiled programs from

a high-level language to a machine-specific language.

C programs are written in human-readable constructs forming the source code of

the application. The source code is not directly executable by a computer. It takes a

three-step process [5] to transform the source code into executable code. These

three steps are: Preprocessing, compiling and linking.

• Preprocessing: At this stage, preprocessor directives (commands that begin

with a # character) are parsed by a preprocessor which leads to modifications

in the source code before being passed to the compiler.

• Compiling: This phase causes the modified source code to be compiled into

binary object code. This object code is not yet executable, it lacks some

critical routines and metadata.

• Linking: The object code is combined with the required supporting code to

make an executable program. This step typically involves adding in any

libraries that are required.

In most modern compilers, these three activities are handled by a single application,

although it is possible to tell the compiler not to do certain functions. (For example,

to compile but not link a program.) There are a variety of C compilers available for

many different platforms. Some compilers must be purchased and some are free to

use. Three of the most common are GNU GCC, Clang/LLVM and Microsoft Visual C.

GNU GCC is found on many platforms such as Linux, many flavors of UNIX, and even

Windows. Clang/LLVM is available for all modern Mac OSX systems and many BSD

variants. Microsoft Visual C is a core component of Microsoft's Visual Studio

platform. We will use GNU gcc [6] in our use cases, mainly due to its availability on

many different platforms.

9 Reducing the level of abstraction

1.3.1 What is the compiler’s job?
In computing, a compiler [7] is a computer program that translates computer

code written in one programming language (the source language) into another

language (the target language). The name "compiler" is primarily used for programs

that translate source code from a high-level programming language to a low-level

programming language (e.g., assembly language, object code, or machine code) to

create an executable program.

A compiler is likely to perform some or all of the following operations, often called

phases: preprocessing, lexical analysis, parsing, semantic analysis (syntax-directed

translation), conversion of input programs to an intermediate representation, code

optimization, and machine-specific code generation. Compilers generally implement

these phases as modular components, promoting efficient design and correctness of

transformations of source input to target output. Program faults caused by incorrect

compiler behavior can be very difficult to track down and can be the source of a

security flaw in the program; therefore, compiler implementers invest significant

effort to ensure compiler correctness.

The compiler also comes with a set of plugins each responsible for some tasks, an

example of such plugins, discussed in section 2.2.5, is one that implements a security

mechanism against stack’s buffer overflow attacks.

Figure 3: The compiler’s phases

10 Reducing the level of abstraction

After the compiler has successfully finished its job, another tool called the linker

kicks in. The linker’s job is to combine all of the object files and produce the desired

output file (e.g., typically an executable file). This process on which the linker acts, is

called linking.

1.3.2 The linker’s job
Linking[8] is the process of collecting and combining various pieces of code

and data, from different sources (e.g., libraries and object files), into a single file that

can be loaded (copied) into memory and executed. Linking can be performed at

compile time, when the source code is translated into machine code, at load time,

when the program is loaded into memory and executed by the loader, and even at

run time, by application programs. On early computer systems, linking was

performed manually. In modern systems, linking is performed automatically by

programs called linkers.

Linkers play a crucial role in software development because they enable separate

compilation. Instead of organizing a large application as one monolithic source file,

we can decompose it into smaller, more manageable modules that can be modified

and compiled separately. When we change one of these modules, we simply

recompile it and relink the application, without having to recompile the other files.

C programs are often linked with functions that pertain to a standard library which in

most cases cover a big part of the totality of the application. The natural way to link

code and data from different object files is by combining them in the same

executable file, this method is called static linking.

1.3.2.1 Static linking and dynamic linking
Dynamic linking and static linking are two methods used to link libraries to a

program, each with distinct advantages and trade-offs. In the context of a C

program, understanding these methods is crucial to dig in the details behind C

constructs.

Static linking involves copying all the necessary library functions into the final

executable at compile time, creating a self-contained binary. This results in larger

executables, as each program includes its own copy of the library code. For example,

if multiple C programs use the same standard library functions, each statically linked

program will have its own instance of these functions, leading to redundancy. Static

linking also means that any updates to the library require recompiling all dependent

programs to benefit from the changes.

Conversely, dynamic linking links the program to shared libraries at runtime. Instead

of embedding the library code into the executable, the program includes references

to shared library files, typically with a .so (shared object) extension on Unix-like

systems. This approach significantly reduces the executable size and allows multiple

programs to share a single copy of the library code, conserving memory and disk

space. For a dynamically linked C program, this means that the common standard

11 Reducing the level of abstraction

library functions are stored in shared .so files like those provided by GNU C Library

(glibc).

When a dynamically linked C program is executed, it relies on two critical sections in

the final binary: the Procedure Linkage Table (PLT) and the Global Offset Table

(GOT). The PLT is used for calling functions in shared libraries. Initially, when a

function from a shared library is called, the PLT entry for that function redirects the

call to the dynamic linker. The dynamic linker then resolves the function's address

and updates the GOT with this address. Subsequent calls to the function use the

resolved address directly, improving performance.

The GOT stores the addresses of global variables and functions. During program

execution, the dynamic linker updates the GOT with the actual memory addresses of

the shared library's functions and variables. This mechanism allows the program to

access these addresses efficiently, even though their exact locations are not known

until runtime.

GNU C Library (glibc) plays a pivotal role in this process. It provides essential APIs for

system calls, input/output operations, memory management, and more. When a C

program dynamically linked against glibc is executed, the dynamic linker loads the

necessary .so files and resolves the function and variable addresses using the PLT

and GOT. This ensures the program can run with the correct library code, leveraging

the latest updates to the shared libraries without needing recompilation.

1.3.3 Summary
To summarize, the life cycle of a C program involves several stages from the

creation of the source code to the generation of an executable file. Here are the

stages that the C program passes through, in chronological order:

Writing Code: The programmer writes the C source code in a text editor or an

Integrated Development Environment (IDE) and saves it with a .c extension.

Compilation: The source code is passed through a compiler (such as GCC, Clang, or

MSVC) which translates it into machine-readable binary code called object code (.o

files in Unix-like systems, .obj files in Windows). This process involves syntax

checking, semantic analysis, and code optimization.

Preprocessing: Before compilation, the source code undergoes preprocessing. This

stage involves handling preprocessor directives (such as #include and #define), which

are expanded and substituted into the code.

Linking: If the program consists of multiple source files or uses external libraries, the

object files need to be linked together. The linker takes care of this process by

resolving references to functions and variables across different object files and

libraries. It creates an executable file by combining the object code with any

necessary system libraries.

12 Reducing the level of abstraction

Generating Executable: Finally, the linker produces an executable file (usually with a

.exe extension in Windows or no extension in Unix-like systems) containing the

machine code that the computer's processor can execute.

Execution: The generated executable file can be run by the operating system, and

the instructions within it are executed by the CPU, performing the tasks defined in

the original C program.

 Figure 4: C program life cycle

1.4 Function Calls: From High-level Statement to Machine

Instructions
Compilers and linkers operate within a framework of rules, standardized in

publicly available guidelines established by trusted authorities, known as

conventions. One subset of these rules is known as calling conventions, which form a

significant part of a larger set of regulations called the ABI (Application Binary

Interface). One of the ABI’s functions is to dictate the process of translating high-

level statements into machine-specific instructions.

Procedures are a key abstraction in software developed in C language. They provide

a way to package code that implements some functionality with a designated set of

arguments and an optional return value. This function can then be invoked from

different points in a program. Understanding the effects of procedure calls on the

stack requires understanding the calling convention specifications and

13 Reducing the level of abstraction

implementations.

 Figure 5: A function call

Many different attributes must be handled when providing machine-level support

for procedures. For discussion purposes, suppose procedure f calls procedure g (see

Figure 5). Control will be passed to g, g then executes and returns back to f. These

actions involve one or more of the following mechanisms:

Passing control: The program counter (a register that keeps track of the executing

instruction, see the next section) must be set to the starting address of the code for

g upon entry and then set to the instruction in f following the call to g upon return.

Passing data: f must be able to provide one or more parameters to g, and g must be

able to return a value back to f. Allocating and deallocating memory. g may need to

allocate space for local variables when it begins and then free that storage before it

returns control to f. The x86-64 (a computer architecture discussed in the next

section) implementation of procedures involves a combination of special instructions

and a set of conventions on how to use the machine resources, such as the registers

and the program memory. Great effort has been made to minimize the overhead

involved in invoking a procedure.

As a consequence, it follows what can be seen as a minimalist strategy,

implementing only as much of the above set of mechanisms as is required for each

14 Reducing the level of abstraction

particular procedure. In our work, we inspected the different mechanisms. Step by

step, first describing control, then data passing, and, finally, memory management.

Before having a look at the rules defining procedure calls translation to machine

language instructions and reading them later in assembly language (a language that

uses human-readable mnemonics) it is crucial that we have a background on the

components of hardware which will execute our software.

1.4.1 Overview of x86-64 Machine Architecture

1.4.1.1 Registers
A register is the closest unit of storage to a CPU (Central Processing Unit). Storing or

retrieving data from a register is faster than dealing with caches or primary memory.

In the x86-64 computer architecture, there is a set of 16 64-bit general purpose

registers, directly handled by user-software developers.

The following table summarizes the size and the use of the most commonly used

general-purpose x86-64 registers:

64-

bit

32-

bit

16-

bit
8-bit

Special Purpose

for functions

When calling

a function

When writing

a function

Rax eax ax ah,al Return Value Might be changed Use freely

Rbx ebx bx bh,bl
Will not be

changed

Save before

using!

Rcx ecx cx ch,cl
4th integer

argument
Might be changed Use freely

Rdx edx dx dh,dl
3rd integer

argument
Might be changed Use freely

rsi esi si sil
2nd integer

argument
Might be changed Use freely

rdi edi di sil
1st integer

argument
Might be changed Use freely

rbp ebp bp bpl Frame Pointer Maybe Be Careful Maybe Be Careful

rsp esp sp spl Stack Pointer Be Very Careful! Be Very Careful!

r8 r8d r8w r8b
5th integer

argument
Might be changed Use freely

r9 r9d r9w r9b
6th integer

argument
Might be changed Use freely

15 Reducing the level of abstraction

r10 r10d r10w r10b Might be changed Use freely

r11 r11d r11w r11b Might be changed Use freely

r12 r12d r12w r12b
Will not be

changed

Save before

using!

r13 r13d r13w r13b
Will not be

changed

Save before

using!

r14 r14d r14w r14b
Will not be

changed

Save before

using!

r15 r15d r15w r15b
Will not be

changed

Save before

using!

 Table 6: User-controlled x86-64 registers

1.4.1.2 Machine-specific instructions in assembly representation

A CPU is capable of executing a repertory of functions called instructions, among
other operating system-specific instructions, the most used instructions are either
arithmetic and logic instructions, data movement instructions, or control flow in-
structions.

An instruction in assembly representation is an opcode (for operation code) with
zero or more operands (the arguments on which the CPU operates). Each machine-
specific instruction has only one equivalent in assembly language, represented in an
easy-to-recognize mnemonic.

Each mnemonic opcode presented in Figure 7 represents a family of instructions[9].
Within each family, there are variants which take different argument types (regis-
ters, immediate values, or memory addresses) and/or argument sizes (byte, word,
double-word, or quad-word). The former can be distinguished from the prefixes of
the arguments, and the latter by an optional one-letter suffix on the mnemonic.

For example, a mov instruction that sets the value of the 64-bit %rax register to the
immediate value 3 can be written as

 movq $3, %rax

Immediate operands are always prefixed by $.

For instructions that modify one of their operands, the operand that is modified ap-
pears second. This differs from the convention used by Microsoft’s and Borland’s as-
semblers, which are commonly used on DOS and Windows.

16 Reducing the level of abstraction

Opcode Description

Copying values

mov src, dest Copies a value from a register, immediate

value or memory address to a register or

memory address.

cmove %src, %dest Copies from register %src to

register %dest if the last comparison

operation had the corresponding result

(cmove: equality, cmovne: inequality, cmovg:

greater, cmovl: less, cmovge: greater or

equal, cmovle: less or equal).

cmovne %src, %dest

cmovg %src, %dest

cmovl %src, %dest

cmovge %src, %dest

cmovle %src, %dest

Stack management

enter $x, $0 Sets up a procedure’s stack frame by first

pushing the current value of %rbp on to the

stack, storing the current value

of %rsp in %rbp, and finally

decreasing %rsp to make room for x byte-

sized local variables.

Leave Removes local variables from the stack

frame by restoring the old values

of %rsp and %rbp.

push src Decreases %rsp and places src at the new

memory location pointed to by %rsp.

Here, src can be a register, immediate

value or memory address.

pop dest Copies the value stored at the location

pointed to by %rsp to dest and

increases %rsp. Here, dest can be a register

or memory location.

Control flow

call target Jump unconditionally to target and push

return address (current PC + 1) onto stack.

Ret Pop the return address off the stack and

jump unconditionally to this address.

jmp target Jump unconditionally to target, which is

specified as a memory location (for

example, a label).

17 Reducing the level of abstraction

je target Jump to target if the last comparison had

the corresponding result (je: equality; jne:

inequality).
jne target

Arithmetic and logic

add src, dest Add src to dest.

sub src, dest Subtract src from dest.

imul src, dest Multiply dest by src.

idiv divisor Divide rdx:rax by divisor. Store quotient

in rax and store remainder in rdx.

shr reg Shift reg to the left or right by value

in cl (low 8 bits of rcx).
shl reg

ror src, dest Rotate dest to the left or right by src bits.

cmp src, dest Set flags corresponding to whether dest is

less than, equal to, or greater than src

 Table 7: Commonly used x86-64 instructions

This way of writing assembly code, presented in Table 7, is called AT&T syntax.

Another syntax commonly used to read disassembler output is called Intel syntax. In

the scope of our project, Intel syntax differs from AT&T syntax in that, the dest

register (i.e., the register which will be modified) is the first operand of the

instruction instead of being the second one.

This project uses a disassembler called objdump[10] through the examples

presented. A disassembler is an application software responsible to convert a

program form its binary representation to its assembly representation.

1.4.2 Overview of the Calling Conventions of System V ABI
The standard calling sequence requirements apply only to global functions.

Local functions that are not reachable from other compilation units may use

different conventions. Nevertheless, the ABI [11] recommends that all functions use

the standard calling sequence when possible.

From Intel’s documentation [d1], “The System V Application Binary Interface defines

a system interface for compiled application programs. Its purpose is to establish a

standard binary interface for application programs on systems that implement the

interfaces defined in the X/Open Common Application Environment Specification,

Issue 4.2 (also known as the “Single UNIX Specification”) and the System V Interface

Definition, Issue 4. This includes, but is not limited to, systems that have

implemented UNIX System V, Release 4.”

18 Reducing the level of abstraction

The System V Application Binary Interface (ABI) defines the calling conventions for

how functions in a program interact at the binary level, specifically focusing on how

arguments are passed, how the call and return instructions operate, and how the

stack is managed.

One of the primary purposes of the System V ABI's calling conventions is to establish

a standardized method for argument passing between functions. In this convention,

the first six integer or pointer arguments are passed using specific registers (RDI, RSI,

RDX, RCX, R8, and R9 on x86-64 architecture). If there are more than six arguments,

the additional ones are passed on the stack. Arguments of type floating point, are

passed using the registers XMM0 to XMM7.

This method minimizes memory access and leverages fast register operations,

improving performance.

The call instruction is used to transfer control to a function. When a function is

called, the return address (the address of the instruction immediately following the

call) is pushed onto the stack. This ensures that the CPU knows where to return once

the function execution is complete. The ret instruction, which stands for return, is

used at the end of the function to pop the return address from the stack and jump

back to that location, resuming execution of the caller function.

The stack plays a crucial role in function calls, particularly in managing local

variables, passing additional arguments, and saving the state of registers. When a

function is called, a new stack frame is created. This frame includes space for the

return address, the function's local variables, and the saved registers that need to be

restored when the function returns.

Callee-save and caller-save conventions are essential for preserving register values

across function calls. Callee-save registers (such as RBX, RBP, and R12-R15 on x86-64)

must be preserved by the called function. This means that if the callee modifies

these registers, it must save their original values at the start of the function and

restore them before returning. On the other hand, caller-save registers (such as RAX,

RCX, RDX, and R8-R11) are the responsibility of the calling function. If the caller

needs to preserve the values in these registers across a function call, it must save

them before calling the function and restore them afterward.

By adhering to these conventions, the System V ABI ensures consistency and

predictability in how functions interact, enabling code compiled from different

sources or written in different languages to work together seamlessly. This

standardization is vital for system-level programming, compiler writers for example

are inspired by those standards.

1.4.2.1 Caller save, callee save, and return value
The ABI defines how registers keep or lose their values across calls, we label

the function invoking other functions as a caller and the called function as callee.

Registers %rbp, %rbx, and %r12 through %r15 “belong” to the calling function, and

19 Reducing the level of abstraction

the called function is required to preserve their values. In other words, a called

function must preserve these registers’ values for its caller. This set of registers is

also known as callee save.

The remaining registers “belong” to the called function. If a calling function wants to

preserve such a register value across a function call, it must save the value in its local

stack frame.

When a function wants to return a value of type integer or address to a memory

location, this value is placed in the register RAX.

When a function wants to return a floating-point value, the value is placed in XMM0

register.

1.4.3 The Stack Evolution During Function Calls
The stack is a segment of memory used to store objects with automatic

lifetime. Typical stack addresses on x86-64 look like 0x7ffd'9f10'4f58—that is, close

to 247. The Figure 8.a shows a typical memory allocation of the stack region. The

allocation is done by the kernel of the operating system.

Figure 8.a: Stack allocation in memory

The stack is named after a data structure, which was sort of named after

pancakes[12]. Stack data structures support at least three operations: push adds a

new element to the “top” of the stack; pop removes the top element, showing

whatever was underneath; and top accesses the top element (see section 1.4.1.2).

Note what’s missing: the data structure does not allow access to elements other

than the top. (Which is sort of how stacks of pancakes work.) This restriction can

speed up stack implementations.

Like a stack data structure, the stack memory segment is only accessed from the top.

The currently running function accesses its local variables; the function’s caller,

grand-caller, great-grand-caller, and so forth are dormant until the currently running

function returns.

A function stacks look like this:

20 Reducing the level of abstraction

 Figure 8: Multiple stack frames, each per function

The x86-64 %rsp register is a special-purpose register that defines the current “stack

pointer.” This holds the address of the current top of the stack. On x86-64, as on

many architectures, stacks grow down: a “push” operation adds space for more

automatic-lifetime objects by moving the stack pointer left, to a numerically smaller

address, and a “pop” operation recycles space by moving the stack pointer right, to a

numerically-larger address. This means that considered numerically, the “top” of the

stack has a smaller address than the “bottom.”

Operation of instructions like pushq, popq, call, and ret directly impact the stack

memory. A push instruction pushes a value onto the stack. This both modifies the

stack pointer (making it smaller) and modifies the stack segment (by moving data

there). For example, the instruction pushq X (see section 1.4.1.2, for information on

opcodes) means:

subq $8, %rsp

movq X, (%rsp)

And popq X undoes the effect of pushq X. It means:

movq (%rsp), X

addq $8, %rsp

X can be a register or a memory reference. X is a destination operand in the case of a

pop operation and a source operand in the case of a push operation.

21 Reducing the level of abstraction

The portion of the stack reserved for a function is called: the function’s stack frame.

Stack frames are aligned: x86-64 requires that each stack frame be a multiple of 16

bytes, and when a callq instruction begins execution, the %rsp register must be 16-

byte aligned.

To prepare for a function call, the caller performs the following tasks in its

entry sequence:

• The caller stores the first six arguments in the corresponding registers.

• If the callee takes more than six arguments, or if some of its arguments are

large, the caller must store the surplus arguments on its stack frame. It stores

these in increasing order, so that the 7th argument has a smaller address

than the 8th argument, and so forth. The 7th argument must be stored at

(%rsp) (that is, the top of the stack) when the caller executes its callq

instruction.

• The caller saves any caller-saved registers (see the previous section).

• The caller executes callq instruction (see the overview on x86-64 machine

architecture). This has an effect like pushq $NEXT_INSTRUCTION; jmp

FUNCTION (or, equivalently, subq $8, %rsp; movq $NEXT_INSTRUCTION,

(%rsp); jmp FUNCTION), where NEXT_INSTRUCTION is the address of the

instruction immediately following callq.

This leaves a stack like this:

Figure 9: the stack after the call

To return from a function:

• The callee places its return value in %rax, if it is of type integer, or in %MMX0

for a floating-point return value.

• The callee restores the stack pointer to its value at entry (“entry %rsp”), if

necessary.

• The callee executes the retq instruction. This has an effect like popq %rip,

which removes the return address from the stack and jumps to that address.

• The caller then cleans up any space it prepared for arguments and restores

caller-saved registers if necessary.

22 Reducing the level of abstraction

Particularly simple callees don’t need to do much more than return, but most callees

will perform more tasks, such as allocating space for local variables and calling

functions themselves.

23 Reducing the level of abstraction

1.4.4 Concrete Example

 Figure 10: Function f calls function g

Figure 10 shows a simple C program, it defines two functions, f and g, the function f

calls the functions g, g executes and returns to f, then f will return the same value

returned by g.

The function main is the execution starting point of any C program, in this case, it

calls the function f without arguments, as control passes to the function f, the

function f calls the function g with the argument a=1. When control goes back to f, f

returns the return value of the function g. The function g takes one argument and it

returns the argument incremented by one.

The program is compiled using gcc which is a compiler driver, it drives the process of

compilation and linking of the program (see section 1.3). When executed, the

program returned 2.

24 Reducing the level of abstraction

Figure 11: The main function in assembly representation

Figure 12: Function f in assembly representation

Figure 13: Function g in assembly representation

As figures 11,12 and 13 show, the function main is mapped to address (40112c)hex, f

to address (401106)hex, and the function g is mapped to address (40111c)hex .

I used gdb debugger to track the execution of this program, the results are shown

below, and they seem compliant with the system V ABI definition of the calling

conventions:

Before calling a function that accepts arguments, the caller must store the

argument(s)’s values in the corresponding registers.

Throughout the documentation, figures are used to facilitate the understanding of

some details during the execution of a C program in a computer system. Those

figures are sometimes put in the chronological order of the instructions being

executed.

The figures reduce the computer system as a memory holding code and data for a C

program, connected to the MMU, the memory management unit, a hardware

component discussed in section 2.2.3.1, a CPU, and a set of registers.

25 Reducing the level of abstraction

When a CPU cycle starts, the address contained in the RIP register is translated to a

physical address, this is called an instruction fetch. Fetching an instruction requires a

memory read operation, the instruction saved at the physical address provided by

the MMU will be copied to a register illustrated as IR (instruction register).

Whenever an instruction is fetched the RIP register is incremented by the size of the

instruction in bytes, pointing to the next instruction.

The second phase of the cycle of the CPU is decoding, the CPU will decode the

instruction, and changes its state before executing it. This phase also requires

fetching the operands of the instruction being decoded from memory or registers.

The decoding phase is followed by the execution of the operation addressed by the

instruction, and potentially by the saving of any value back to a memory location or a

register.

After checking for interrupts the CPU will start the cycle again by fetching the next

instruction. Interrupts are out of the scope of this project. They can be imagined like

events that stop the execution of the program permanently or for a period of time.

The figures also show, where the RSP and RBP registers are pointing to, and what

instruction is executed.

Figure 14 illustrates the argument passing mechanism, before the function f calls the

function g, it must prepare arguments for it, in this case only one argument of value

one gets passed within the register RDI.

Figure 14: Passing one argument

26 Reducing the level of abstraction

Call <40111c> at address (401114)hex is instructing the CPU to copy the address

(40111c)hex, the address of the next instruction in the block of the function f, to the

top of the stack (e.g. to the memory location pointed to by RSP register).

Figure 15: The call instruction

Then, the operand of the call instruction was copied to the RIP register, this will pass

control to the function g at the next cycle of the CPU (see Figure 15).

The first two instructions in each function are identical, this is called a function

prologue, a function prologue sets the stage for a new activation record, and it

manipulates the value of RBP register to indicate a new stack frame.

push rbp instruction (e.g., the first instruction of the function prologue) moves the

value of rbp register which holds the base of the stack of the caller (e.g., the address

at which the activation record of the caller starts) to the stack, this is a callee save as

defined in the previous section about System V ABI.

Push rbp instruction at address (40111c)hex at the block of the function g means

decrement rsp register by 8, the size of the content of RBP in bytes, and copy the

value in rbp register at the location pointed to by rsp. So, the value of rbp will be

stored at the next word after the return address towards lower addresses on the

stack (see Figure 16).

The second instruction in the function prologue, mov rbp,rsp, is instructing the

processor to copy the value in rsp register to the rbp register. This means that the

callee (e.g., the called function) is setting a new activation record on the stack, so

27 Reducing the level of abstraction

when it calculates addresses for its local variables, the called function uses the new

rbp as a base register.

Figure 16: RBP register saved by the callee

The second instruction in each function’s prologue is manipulating the value of RBP,

making this register point to the memory location where the saved RBP is stored

(see Figure 17).

This new value of RBP will be used by the callee (i.e., the function g) whenever it

calculates an address of its local variables. This register indicates the stack frame of

each function.

28 Reducing the level of abstraction

Figure 17: Indicating a new stack frame

When g finishes its calculation, two instructions (the instructions at addresses

40112a and 40112b), forming what is known as a function epilogue, would be

executed.

The function g must return a value, before passing control back to f. In this case, only

one integer return-value is passed using rax register (see Figure 18).

29 Reducing the level of abstraction

Figure 18: Passing integer return value

When the rip reaches the pop %rbp instruction inside the block of function g, rsp at

this point is referring to the location where the base of the stack used by f is saved.

The instruction pop %rbp, when executed, will restore the value of rbp as it was

before the call to g (see Figure 19.)

After the pop instruction is executed rsp is incremented by the number of bytes an

x86-64 address takes (e.g., 8 bytes).

This pattern of saving the address of the next instruction after the call instruction

and saving the value of rbp register at the address referred by rsp, in this order, is

repeated also when main calls f.

30 Reducing the level of abstraction

Figure 19: restoring the value of RBP

The second instruction in a function epilogue is the ret instruction. This instruction

causes the CPU to pop the return address (i.e., the saved value of RIP register) from

the stack into the RIP register, thereby transferring control back to the caller

function. Upon execution, the stack pointer (RSP) is incremented to remove the

return address from the stack, effectively cleaning up the stack frame of the called

function (see Figure 20).

Figure 21, shows how the stack is left after returning to the caller.

31 Reducing the level of abstraction

Figure 20: The ret instruction

Figure 21: The end of the call sequence

32 Reducing the level of abstraction

1.5 Conclusion
Our inspections on the intervention of the stack memory in function calls show

that two kinds of data are stored there. The saved instruction pointer (saved RIP)

and normal data such as local variables are mixed together. Critical control flow data

presence along with user defined data is putting the control flow of the program into

risk, if the user defined data isn’t handled carefully. This design is the cause of stack-

based buffer overflow, and it will be clearer how this design leads to exploitable bug

in the following sections where we focus on the bug on more details.

33 Functions Lacking Bounds Checking

Chapter 2 Functions Lacking Bounds Checking

2.1 Introduction
In computer programming, bounds checking [13] is any method of detecting

whether a variable is within some bounds before it is used. It is usually used to

ensure that a number fits into a given type (range checking), or that a variable being

used as an array index is within the bounds of the array (index checking). A failed

bounds check usually results in the generation of some sort of exception signal.

As performing bounds checking during each use can be time-consuming, it is not

always done. Bounds-checking elimination is a compiler optimization technique that

eliminates unneeded bounds checking.

This chapter addresses the critical issue of bounds checking in C programming.

We explore the risks posed by buffer overflows due to the language's lack of built-in

protections, including common vulnerabilities like those found in functions such as

strcpy(). We'll examine how lack of bounds checking is exploited by attackers, exiting

mitigation techniques, and a proposed solution by statically substituting this function

with its relative strncpy() without the need for the source code.

A contiguous set of memory locations is known as a buffer. When a function wants

to deal with such a buffer, a pointer to that memory location is passed as an

argument to that function. A lot of commonly used functions, provided by the C

standard library, don’t implement a way to check the size of the buffers passed as

arguments. Thus, if there is a way to control the size of the buffer other regions in

memory, not reserved for the argument, would be corrupted, leading to a potential

binary exploitation.

2.2 GNU C Library
The vulnerable function provided as an example in this work is strcpy() is part

of the C standard library. The GNU C library [14] is a specific implementation of the C

standard library. Commonly abbreviated as glibc, is a fundamental component of

most Unix-like operating systems. It is a core part of the GNU project and serves as

the standard C library for these systems. Developed by the Free Software Foundation

(FSF), glibc provides essential functionality to programs written in the C

programming language, including input/output operations, memory allocation, and

system calls.

At its core, glibc is designed to be highly portable, supporting a wide range of

hardware architectures and operating system kernels. This portability allows

software developers to write code that can run on various Unix-like systems without

34 Functions Lacking Bounds Checking

modification. One of the key features of glibc is its adherence to various standards,

particularly the ISO C and POSIX standards. By conforming to these standards, glibc

ensures that programs written against its APIs behave predictably across different

platforms. This adherence also facilitates interoperability between different software

components and systems. In addition to standard C library functions, glibc includes

extensions and optimizations to improve performance and functionality. These

extensions cover areas such as internationalization, threading, and networking,

enhancing the capabilities of applications running on Unix-like systems.

Overall, glibc plays a crucial role in the functioning of Unix-like operating systems,

providing a robust and standardized foundation for software development and

system operations. Its portability, standards compliance, and ongoing development

make it an indispensable component of the open-source ecosystem.

2.3 Unsafe Functions: an Example of strcpy()
Glibc, like many software libraries, includes functions that lack bounds

checking, which can lead to vulnerabilities if not used carefully. To name a few, the

following list (Table 22) includes some popular glibc functions known to lack bounds

checking:

strcpy : Copies a null-terminated string from the source to the destination

buffer without performing bounds checking.

strcat : Appends the source null-terminated string to the end of the

destination null-terminated string, also without bounds checking.

gets : Reads a line from standard input into a buffer until a newline or EOF

is encountered, but lacks bounds checking and is considered unsafe.

sprint : Formats and stores a series of characters and values into a buffer,

similar to printf.

scanf : Reads formatted input from standard input, parsing it according to

the provided format string.

realpath : Resolves a relative path to an absolute path and stores it in a

buffer, which must be sufficiently large.

memcpy : Copies a specified number of bytes from a source memory

location to a destination.

strtok : Tokenizes a string, splitting it into substrings based on specified

delimiter characters, modifying the original string in the process.

Table 22: Popular vulnerable functions

Certain functions behave in dangerous ways regardless of how they are used.

Functions in this category were often implemented without taking security concerns

into account. The strcpy() function, used as an example in this work, is unsafe

35 Functions Lacking Bounds Checking

because it does not perform bounds checking on its arguments. When used

uncarefully, it can lead to out-of-bounds memory writing, corrupting memory

locations that aren’t concerned by the function of strcpy.

strcpy() is used to copy, byte by byte, a string of characters pointed to by its second

argument, to a buffer pointed to by the function’s first argument until a null

terminator is encountered. However, it does not perform any bounds checking,

meaning it will continue copying characters from the source string until it reaches a

null terminator, potentially overflowing the destination buffer if it is not large

enough to hold the entire string. This can result in buffer overflow vulnerabilities, a

common security issue where an attacker can exploit the lack of bounds checking to

overwrite adjacent memory locations with malicious code or data.

For example, consider the following code snippet:

char dest[10];

char source[] = "This is a long string";

strcpy(dest, source);

In this case, strcpy() will attempt to copy the entire contents of the source

array (including the null terminator) into the dest array, which only has space for 10

characters. As a result, it will overflow the dest buffer, leading to undefined behavior

and potentially exploitable security vulnerabilities.

To mitigate the risk of buffer overflow vulnerabilities, developers should use safer

alternatives that perform bounds checking, such as strncpy(). strncpy function allows

developers to specify the maximum number of characters to copy, preventing buffer

overflows if the source string is longer than the specified number.

2.3.1 The Bug in Detail
A buffer is a contiguous region of memory, it is a set of adjacent memory

locations. An example of a buffer is an array of any type. The buffer is identified by

the memory address of its first element.

In our explained example, the buffer is a null-terminated string of characters. It can

be the first argument of the strcpy function (the destination buffer), as it can be the

source buffer (the second argument of the function).

Generally, the problem occurs when a programmer uses a function that

copies a chunk of memory from one buffer to another without taking the size of

each buffer into account. For reasons of simplicity, this work takes the example of

strcpy(). The function takes two arguments, the first argument (the destination

argument) is a pointer to the destination buffer, on which the string will be copied,

36 Functions Lacking Bounds Checking

and the second argument (the source argument) is an address pointing to where the

string is stored in memory.

In some cases, the programmer is giving the user of the program the ability to store

a string of an arbitrary size in the buffer pointed to by the source argument. In this

case, if the destination buffer can’t support the user’s chosen size (e.g., the size of

the destination buffer is smaller than the size of the source buffer), the function

using (i.e., calling) strcpy() will have a corrupted stack frame. Especially, memory

locations adjacent to the destination buffer will be corrupted.

As we explored in the previous chapter, data that contributes to the flow of

control of a program is stored on the stack, this is the saved return address. The

saved return address is pushed on the stack after a function executes a call

instruction to another function, so, when the called function finishes its computation

and executes the RET instruction, the execution will continue at the block of the

caller, in the instruction following the call instruction. This data is targeted by

attackers by exploiting stack overflow vulnerability. It is corrupted to manipulate the

flow of the program that uses strcpy function or any similar function in terms of the

discussed vulnerability.

When the saved return address gets corrupted, whenever a ret instruction is

executed in the function that uses strcpy, control flow will be passed to the

instruction pointed to by the corrupted data.

37 Functions Lacking Bounds Checking

Figure 22: A program using strcpy

At compile-time, as Figure 22 shows, the compiler will reserve space for the

destination buffer as dictated by the developer.

The uncareful use of strcpy, will overflow the destination buffer, leaving the stack

somehow like what is shown in Figure 23.

38 Functions Lacking Bounds Checking

Figure 23: Corrupted caller’s stack frame

2.3.1.1 strcpy function
From the Linux man page of this function, we see the description below

(figure 24):

The strcpy() function copies the string pointed to by src, including the terminating

null byte ('\0'), to the buffer pointed to by dest. The strings may not overlap, and the

destination string dest must be large enough to receive the copy. Beware of buffer

overruns! (See BUGS.)

The strncpy() function is similar, except that at most n bytes of src are copied.

Warning: If there is no null byte among the first n bytes of src, the string placed in

dest will not be null-terminated.

If the length of src is less than n, strncpy() writes additional null bytes to dest to

ensure that a total of n bytes are written.

39 Functions Lacking Bounds Checking

A simple implementation of strncpy() might be:

char *

strncpy(char *dest, const char *src, size_t n)

{

 size_t i;

 for (i = 0; i < n && src[i] != '\0'; i++)

 dest[i] = src[i];

 for (; i < n; i++)

 dest[i] = '\0';

 return dest;

}

This function replaces strcpy() and it checks the bounds of the source buffer. This

function will be used in section 2.3.1 where a mitigation by substitution is proposed.

Return Value

The strcpy() and strncpy() functions return a pointer to the destination string dest.

Bug

If the destination string of a strcpy() is not large enough, then anything might

happen. Overflowing fixed-length string buffers is a favorite cracker technique for

taking complete control of the machine. Any time a program reads or copies data

into a buffer, the program first needs to check that there's enough space. This may

be unnecessary if you can show that overflow is impossible, but be careful: programs

can get changed over time, in ways that may make the impossible possible.

Figure 24: Linux man page of strcpy

Consider the source code of a program using the flawed strcpy function (Figure 25).

The developer of this program neglected the situation where the user can provide a

string of more than 15 characters.

#include <stdio.h>

#include <string.h>

40 Functions Lacking Bounds Checking

void printName(char* buffer) {

char name[16];

strcpy(name, buffer);

printf("Hello %s\n", name);

}

int main(int argc, char* argv[]) {

if(argc > 1) printName(argv[1]);

return 0;

}

Figure 25: A program invoking strcpy

Executing the program with a legitimate input gave an expected behavior as in

Figure 26.

Figure 26: Normal execution

Executing the program with an argument of more than 16 characters stops the

program (see figure 27).

Figure 27: An execution with unintended input

The program was stopped because the saved return address was corrupted by the

ASCII value of the character ‘e’.

During the execution of the program, at the point before the program was stopped.

The inspection of the stack using gdb [15] debugger is shown in Figure 28.

41 Functions Lacking Bounds Checking

Figure 28: Debugger view of the program

We stopped the execution of the program before the ret instruction in the block of

the printName function was executed for debugging purposes. At this point of

execution, the rsp register was pointing to the saved return address. Inspecting what

value is stored at the location pointed to by rsp, shows some instances of the letter

‘e’. This means that upon the execution of the ret instruction in the block of

printName, control will be passed to a corrupted return address, in this case, the

address: 0x6565656565656565 (see Figure 29).

Figure 29: The corrupted return address

However, Figure 30 shows that the program was stopped by the operating system

due to a mitigation discussed in section 2.2.3.

Figure 30: Segmentation Fault exception

42 Functions Lacking Bounds Checking

2.3.2 Exploit: Arbitrary Code Execution
Stack buffer overflow bug can be exploited to corrupt program’s data. Data

corruption can impact the control flow of a program, if this data is used to do so.

In worst cases, the bug is exploited by attackers causing the vulnerable

program to execute arbitrary, attacker-chosen code.

Arbitrary code execution exploitation works by putting a well-crafted sequence of

characters in the unprotected source buffer on which the attacker is having control.

This sequence of characters is divided to two parts, the first part is the code in

machine language that the attacker wants to execute. The second part is a memory

address pointing to the first byte of the first part. The address must coincide, in

position, with the saved return address on the stack (see figure 31).

The favorite code in an attacker point of view is one which spawns a shell, a

command interpreter program.

Figure 31: Inner workings of shellcode exploit

The shellcode must meet some constraints. It must avoid null bytes, as these are

interpreted as string terminators and would truncate the shellcode when copied by

functions like strcpy.

43 Functions Lacking Bounds Checking

The size of the shellcode must be compact enough to fit into the buffer being

overflowed. Also, Certain characters may need to be avoided depending on the

context (e.g., newline characters, spaces, and others that could affect the copying

process or execution flow).

2.3.3 Mitigation: access restriction to the stack

2.3.3.1 The memory management unit
This exploit is mitigated by designers using a special hardware component:

MMU[16]. The Memory Management Unit is a hardware component lays between

the CPU and the memory controller. It pertains to the CPU and it stores a data

structure called page tables used to resolve virtual addresses to physical addresses.

The MMU implements the concept of virtual memory, which allows a computer to

appear to have more memory than it physically possesses. Each program running on

the system operates within its own virtual address space, which is divided into fixed-

size units called pages. When a program accesses memory, it uses virtual addresses.

The MMU translates these virtual addresses into physical addresses, which

correspond to specific locations in physical memory (RAM). This translation is

performed using hardware-based memory management techniques. Each entry in

the page table corresponds to a page of memory, containing the physical address

where that page is stored.

If a program accesses a virtual address that is not currently mapped to a

physical address, a page fault occurs. The MMU intercepts this fault and triggers a

process called page fault handling. The operating system then determines the

appropriate action, such as loading the required page from secondary storage (e.g.,

disk) into physical memory.

The MMU enforces memory protection by assigning access permissions to each page

of memory. These permissions specify whether a page can be read from, written to,

or executed. If a program attempts to access memory in violation of these

permissions, the MMU raises an exception, typically resulting in a segmentation fault

or similar error.

The mitigation is called NX (No-eXecute), it consists of restricting the stack to be

accessed for code execution. Page tables are extended to specify the access rights

for each region in memory. The stack region is accessed only for a read or a write

operation. The NX bit works by marking memory pages with specific permissions that

define whether code execution is allowed on those pages. In particular:

• Data Pages: Pages designated to store data (such as those used for the stack

or heap) are marked as non-executable.

• Code Pages: Pages designated to store executable code (such as those

containing the program's instructions) are marked as executable.

When the CPU encounters an instruction that attempts to execute code from a non-

executable page, it triggers a hardware exception, preventing the execution of the

44 Functions Lacking Bounds Checking

injected code. This mechanism effectively stops many common exploitation

techniques, as it enforces a clear separation between executable code and data.

By implementing the NX bit, modern processors and operating systems can provide

an additional layer of security, ensuring that only intended and authorized code is

executed, thereby significantly mitigating the risk of arbitrary code execution

through exploits like stack-based buffer overflows.

2.3.3.2 Stack with read and write access permissions
Designers thought that memory segments (set of pages) of the process which

contain code must be marked as executable and read-only. On the other hand, those

areas containing data are marked as read/write and non-executable. Processors

must provide hardware support to check for this policy when fetching instructions

from main memory. Even if an attacker successfully injects code into a writeable (not

executable) memory region, any attempt to execute this code would lead to a

process crash. This technique is also known as “W∧X” because a memory page can

be marked as executable or writable, but not both at the same time. Though this

mechanism is implemented on the MMU, the operating system support is required:

At the startup time of a process, the operating system and the runtime loader use

mmap extensively to set up the process's memory layout. This includes mapping the

executable code, shared libraries, the stack, the heap, and other necessary regions

into the process's address space. The usage of mmap at this stage is crucial for

enforcing memory protections and supporting NX (No-eXecute) mitigation.

mmap is a system call, wrapped by a C function called also mmap[18]. In a typical

unix-like system, mmap function is used by the loader at the startup time to allocate

memory for the stack, it is invoked as follow:

mmap(stack_addr, stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE |

MAP_ANONYMOUS, -1, 0);

The flags PROT_READ and PROT_WRITE specify the access permissions to the stack

as read and write, this will configure the data structure stored in the MMU.

The Figure 32 highlights the allocation of the stack by tracing the use of system calls

at the execution of a typical C program.

Figure 32: Stack allocation using mmap

45 Functions Lacking Bounds Checking

By visualizing the memory layout of a running process, we can also confirm the

presence of this mitigation on modern systems (see Figure 33). The stack is mapped

as readable and writable only.

Figure 33: The memory layout of a running process

2.3.4 Evasion: Code Reuse Attack
The Non-eXecutable bit (NX)/Data Execution Prevention (DEP) mechanism

can be bypassed using attacks that do not require to execute an injected code, but

reuse the already existing and mapped code on the target application.

Code Reuse Attacks work by corrupting the return address on the stack to repurpose

existing components that are mapped in the MMU as executable. In particular, they

repurpose existing code to perform arbitrary computations (see Figure 34).

46 Functions Lacking Bounds Checking

Figure 34: Code reuse attack

 There is a family of techniques referred to as ret2* and more generally the Return

Oriented Programming (ROP) technique. ROP is a very effective technique to bypass

the NX mitigation. It is realistic to assume that modern attacks do not inject code but

use the ROP method. Therefore, from now on we will assume that the NX bit

protection is bypassed directly, and then the security relies on the effectiveness of

the remaining security measures.

2.3.5 Mitigation: Stack Canaries
This section shows an additional mitigation that is done after programmers

generate their source code, during compilation time. In the event that source code is

absent, a method for achieving stronger protection is given in the next section. Stack

Canaries are quite basic; we start the function with a random value added to the

stack. The original random value is compared to the current value before the

program performs ret; if they match, there hasn't been a buffer overflow. If they

aren't, the software fails, frequently accompanied by a warning message stating that

"stack smashing detected." The attacker then tries to overflow to take control of the

saved return address.

There have been three different canary types proposed [17], each with advantages

and disadvantages:

47 Functions Lacking Bounds Checking

• Random: the canary is a random number, unknown to the attacker;

• Terminator: the canary contains characters that stop most string functions

(newline, null byte, linefeed, −1);

• XOR: the canary is the XOR of a random value and the saved return address.

2.3.5.1 Concept and Limitations
If the attacker is unable to guess them, random canaries are a good idea. Sadly,

memory leak issues have the ability to expose the value of the canary, making it

completely worthless. Conversely, terminator canaries are constant values that the

attacker already knows and can't modify. They utilize numerous strategies to thwart

the attacks. Take a strcpy()-based overflow, for instance. Because strcpy() won't copy

all the bytes that follow a terminator character, we know that the attacker's payload

cannot contain a newline character. However, it will be discovered if the attacker

replaces the newline in the canary with something different. Sadly there are flaws

with memcpy(), read(), and even custom hand-written code because they do not

depend on any special character.

Using a Random Canary or a Terminator Canary isn’t efficient when the program has

also vulnerabilities that allow for arbitrary memory write or arbitrary memory read.

If an attacker can expose the random value of the Canary using a vulnerability like

format string, he would easily corrupt the saved return address. Vulnerabilities that

facilitate arbitrary memory write will allow the attacker to corrupt the saved return

address without the need of exploiting a stack-based buffer overflow.

By combining the random canary with the initial stored rip address in a XOR

operation, the XOR canaries try to thwart these kinds of attacks, except when the

program presents a memory leak vulnerability, both the XORed value and the

content of RIP can be exposed to the attacker. In real world, this mitigation is

implemented using a combination of the XOR Canary, the Random Canary and the

Terminator Canary, but another kind of disadvantages reveals. Consider a canary

formed by a random value and a terminator character, it is clear it will have a

reduced entropy compared to a completely random canary as the size of random

bytes reduces also which leads to an easy to guess Canary value.

To visualize the role of canaries (XORed, Terminator and Random) in the protection

of the saved return address, Figure 35 shows the memory layout of a program using

one of this mechanism before the stack get corrupted, and Figure 36 highlights how

the corruption is detected.

48 Functions Lacking Bounds Checking

Figure 35: Stack frame before the corruption

49 Functions Lacking Bounds Checking

Figure 36: Detected memory corruption

The program invoking strcpy didn’t handle the case of out-of-bounds memory

writing, so the attacker-controlled source buffer was successfully copied into the

destination buffer, corrupting the Random (XORed or Terminator) value adjacent to

the destination buffer of the strcpy function. The Canary mitigation, as the

subsequent sections show, includes in the mitigated program a way to check for the

integrity of the canary value before returning to the caller. In this case, the function

invoking strcpy will detect the corruption of the Canary upon returning to its caller,

and the program immediately stops.

2.3.5.2 Implementation of stack canaries in GNU/Linux systems
Linux systems that use the GNU C library and gcc (i.e., most of the Linux

systems) implement stack canaries as a collaboration between the kernel, the

compiler and the C library. The workflow is as follows [17]:

1. During each execve(), the kernel places a random value in the stack of the new

allocated virtual memory;

50 Functions Lacking Bounds Checking

 2. The C runtime initialization functions that come with the GNU libc use this value

to compute the canary and place it in a well-known location in the process’s

memory;

3. the function prologue generated by gcc takes this global canary and pushes it on

the stack; the function epilogue checks if the local canary matches the global one,

and aborts the process if they differ. We can already make some considerations.

The execve is a system call used to load a binary and execute the program it holds; it

comes always after the fork system call to replace the child process with a new

program. As the Canary value changes only after an execve, it is always the same for

the entire lifetime of a process.

There is a new canary only when execve() is called: a fork()ed process will use the

same canary as its parent.

This implementation also presents some limitations, basically, the Canary exists in

many places in memory. A global copy of the Canary is present in a data-structure

dedicated for the whole program after an execve of that program, and at any

moment a function call is introduced, the called function will copy the Canary from

the global data-structure to its stack frame. Due to the nature of working of the stack

as discovered in chapter 1, no data is really deleted when a stack frame is released,

thus, an attacker can read the value of the Canary from parts on the stack different

from the frame of the flawed function (i.e., the function using a routine lacking of

bounds checking). However, the mitigation still provides a degree of protection, as

the attacker has to exploit more than one bug in order to bypass it.

2.3.5.3 The kernel
When the user puts the pathname of a program in the shell, the shell will

execute an execve system call specifying the invoked program, and its environment

variables. Upon the loading of the program, the Kernel will put a 16 bytes Random

value (generated using a pseudorandom number generator) just above the

environment string [17], and uses an auxiliary vector to indicate the address of those

Random bytes [17.a]

Auxiliary vectors are vector structures that take up two stack lines each, they

provide kernel level information to user-processes. The first line contains a numeric

"tag" that identifies the type of information contained into the second line; the

AT_RANDOM tag (value 25, hex 19) is the one we are interested in; the second line

of the entry with this tag contains the pointer to the random bytes. The kernel

pushes this data structure onto the process stack, immediately below the

environment array. This data structure contains various information about the

process and the program and is primarily used by the dynamic loader. The following

is an example of such auxiliary vector [17.b]:

 AT_SYSINFO_EHDR: 0x7fff35d0d000

 AT_HWCAP: bfebfbff

51 Functions Lacking Bounds Checking

 AT_PAGESZ: 4096

 AT_CLKTCK: 100

 AT_PHDR: 0x400040

 AT_PHENT: 56

 AT_PHNUM: 9

 AT_BASE: 0x0

 AT_FLAGS: 0x0

 AT_ENTRY: 0x40164c

 AT_UID: 1000

 AT_EUID: 1000

 AT_GID: 1000

 AT_EGID: 1000

 AT_SECURE: 0

 AT_RANDOM: 0x7fff35c2a209

 AT_EXECFN: /usr/bin/sleep

 AT_PLATFORM: x86_64

2.3.5.4 The GNU C library
The GNU C library [14] contains some object files that are linked with all

programs by default. The shared objects implement many frequently used routines

such as initialization routines which execute at the startup-time of a process, and

clean-up routines that execute at the end of any process before it exits. The _start

One of the startup routines is called _start, it is the first executed routine in the

lifetime of a process, it implements a small assembly program that calls

_libc_start_main(), function implemented in C language in the standard C library.

The role of this function is to perform some initializations and passes control to the

original program's main function. When a program is compiled to have the stack

canary mitigation, those initialization routines shall copy the least significant bytes

from the kernel-provided random bytes to form the canary value. It depends on the

underlying platform; 4 bytes will be copied in case of 32bit architecture and 8 bytes

otherwise [17]. The copied parts shall be merged with a terminator character, by

replacing the least significant byte by a null character, to end up by a Canary that

combines Random bytes and a Terminator byte. This will lead to an easy to guess

Canary in the case of 32bit architecture, as the Canary contains only 3 Random

bytes.

 Upon the program loading, the kernel puts the 16 random bytes at a Tread-

Local Storage, a per thread data-structure called Thread Control Block. This data-

structure can be corrupted if there in the occurrence of a buffer overflow attack

52 Functions Lacking Bounds Checking

when the buffer is adjacent to the TCB location, adding a new risk to the canary [17].

Basically, initialization routines put the address of this data structure into fs register

(segment selector register) upon the constitution of the Canary value. So, whenever

the global Canary value is needed its address will be calculated using this register.

2.3.5.5 The gcc compiler
The gcc compiler will add canary support to the compiled program if the

stack-protector option is enabled. In current Linux distributions, this is enabled by

default and can be disabled by adding the -fno-stack-protector option to the gcc

command line.

The following options come from GCC4.9.3 Manual:

-fstack-protector

Emit extra code to check for buffer overflows, such as stack smashing attacks. This is

done by adding a guard variable to functions with vulnerable objects. This includes

functions that call alloca, and functions with buffers larger than 8 bytes. The guards

are initialized when a function is entered and then checked when the function exits.

If a guard check fails, an error message is printed and the program exits.

-fstack-protector-all

Like -fstack-protector except that all functions are protected.

-fstack-protector-strong

Like -fstack-protector but includes additional functions to be protected — those that

have local array definitions, or have references to local frame addresses.

When canaries are enabled, the prologue of canary-protected functions becomes:

Lines 1–7 contain a standard prologue, except for the need to reserve space for the

canary in addition to the local variables. Lines 9 and 10 are new: line 9 reads the

global canary from offset 0x28 in the TCB and line 10 copies the canary just above

the saved frame pointer. Note that, if the compiler has to save other registers

53 Functions Lacking Bounds Checking

besides the old frame pointer (see the comment at line 3), the canary will be stored

above them. The canary protected epilogue is:

Lines 1–7 are new, while the others are nothing more than the standard epilogue.

The new instructions add a bit of overhead to the function, so gcc only adds them

where it thinks they are really needed. Basically, only in functions that declare

sufficiently large array variables 2 The __stack_chk_fail function prints an error

message on standard error and aborts the process. For the time being, ignore the

strange @plt suffix in the function name: It is a reference to the linker-generated

Procedure Linkage Table (PLT).

2.4 Alternative Functions: an Example of strncpy()
There is an equivalent to the function strcpy() which do consider the size of the

destination buffer when copying strings in the stack.

The strncpy() function is similar to strcpy() function, except that at most n bytes of

the source (src) buffer are copied. If there is no NULL character among the first n

character of the source buffer, the string placed in the destination buffer (dest) will

not be NULL-terminated. If the length of src is less than n, strncpy() writes an

additional NULL characters to dest to ensure that a total of n characters are written.

Syntax:

char *strncpy(char *dest, const char *src, size_t n)

 src: The string which will be copied.

 dest: Pointer to the destination array where the content is to be copied.

 n: The first n character copied from src to dest.

The next part describes an implementation of a solution to statically replace the

strcpy() function with strncpy() in the executable file without needing the source

code, even if the executable is stripped (i.e., a symbol-free binary).

54 Functions Lacking Bounds Checking

Patching a stripped binary will require that the vulnerable function is dynamically

linked to the program, this is because symbols of statically linked objects can’t

persist after running a strip command against the binary.

2.4.1 A proposed solution: Substituting the Flawed Function

2.4.1.1 Problem and solution
Though it has some limitations, stack canary mitigation is considered as a

robust defense against stack’s buffer overflow bugs. This mitigation requires that the

source code of the vulnerable program is in our hand, which is not always the case.

The bug can be detected in proprietary applications, old libraries or out-of-the-shelf

software when no source code is available.

We proposed a solution based on a binary rewriting approach. Static binary

rewriting has many important applications in software security and systems such as

hardening, repair, patching, instrumentation, and debugging. While many different

static binary rewriting tools have been proposed, most rely on recovering control

flow information from the input binary. Control flow refers to the order in which the

instructions of a program are executed. It determines how a program moves from

one statement to another, based on specific conditions and decisions.

The recovery step is necessary since the rewriting process may move instructions,

meaning that the set of jump targets in the rewritten binary (e.g., the content of

memory locations pointed to by the operands of control-flow instructions) needs to

be adjusted accordingly.

Since the static recovery of control flow information is a hard problem because of
the necessity of the manual efforts it needs, most tools rely on a set of simplifying
heuristics or assumptions, such as specific compilers, specific source languages, or
binary file meta information.
However, the reliance on assumptions or heuristics tends to scale poorly in practice,
and most state-of-the-art static binary rewriting tools cannot handle very large/com-
plex programs such as web browsers.

In this work we use E9Patch, a tool that can statically rewrite x86_64 binaries with-
out any knowledge of control flow information [19]. e9patch is control-flow agnostic
and it doesn’t depend on any heuristics. We will use this tool as a framework to im-
plement our solution to stack buffer overflow vulnerability, caused by the use of
functions that lack bounds checking; And applying the solution to replace strcpy()
function with strncpy() function in stripped binaries to give a concrete use-case. To
do so, E9Patch develops a suite of binary rewriting methodologies—such as instruc-
tion punning, padding, and eviction—that can insert jumps to trampolines without
the need to move other instructions [19]. Since our approach preserves the set of
jump targets, the need for control flow recovery and related heuristics is eliminated.

As such, E9Patch is robust by design, and can scale to very large (>100MB) stripped

binaries including the Google Chrome and FireFox web browsers.
E9Patch operates at a low level, directly manipulating instructions within a binary

file. Its patching process involves several steps. The process can be automated,

55 Functions Lacking Bounds Checking

either by using its default front-end (e9tool) or by developing a custom frontend.

First, e9patch takes an unpatched binary as input, along with disassembly

information detailing instruction locations and sizes, as well as the specific patch

locations. Additionally, it utilizes trampoline templates, which are code snippets

containing the desired functionality to be inserted.

The patching process begins with the selection of patching tactics, where E9Patch

attempts a sequence of strategies (Baseline B1, B2, T1, T2, T3) for each patch

location. These tactics prioritize efficiency and coverage. Baseline tactics (B1 and B2)

involve directly replacing instructions with jumps to trampolines (B1 tactic), or using

punned jumps to conserve space (B2 tactic). If these tactics fail, E9Patch employs

more advanced techniques like padded jumps, successor eviction, or neighbor

eviction to ensure successful patching.

For the x86_64, B1 tactic is implemented using the relative near jump (jmpq rel32)

instruction. Here rel32 is a 32bit signed integer that is added to the program counter

(%rip) in order to orient the jump. The relative near jump instruction is five bytes

long, including one byte for the opcode (0xe9) and four bytes for the rel32 value. A

patch location instruction that is greater-than-or-equal-to five bytes can be directly

replaced, but complications arise when the patch location instruction is smaller than

five bytes. To deal with patch location’s size limit B2,T1,T2 and T3 tactics are

conceived. Those extra tactics are out of the scope of our work, since our patch

locations are call instructions to the strcpy() or any other flawed function.

ELF rewriting is a key aspect of E9Patch's functionality. It patches instructions in

place, replacing targeted instructions with jumps to corresponding trampolines, and

appends new data such as trampoline and instrumentation code to the end of the

binary. Additionally, it integrates a loader at the entry point to map trampoline

pages into the virtual address space during program loading.

The output of E9Patch is a rewritten binary, where the desired patches have been

applied. This modified binary serves as a drop-in replacement for the original,

requiring no additional dependencies or configuration. Essentially, E9Patch skillfully

manipulates instructions and memory layout to achieve efficient and scalable binary

rewriting without the complexities of control flow analysis.

Since our patch will target call instructions to the strcpy(), our patch location takes 5

bytes in memory (i.e., the size of a call instruction) which is large enough to hold a

jump instruction, so replacing the call to strcpy with a jump instruction that address

a safe version of strcpy() (e.g., strncpy()) is possible using B1 tactic.

B1 tactic replaces each patch location instruction with a jump instruction that

redirects control flow to a trampoline that implements the patch. In our case, a

trampoline means a snippet of code that:

1. Save any necessary registers

2. Prepare the arguments for the safer version of the flawed function

3. Call the function that replaces the flawed function

56 Functions Lacking Bounds Checking

Consider the following instruction which is a call to the dynamically linked strcpy()

function:

BINARY REPRESENTATION ASSEMBLY REPRESENTATION

e8 db fe ff ff call 401030 <strcpy@plt>

To substitute strcpy() function with its safer version statically in the binary of the

vulnerable application, we need simply to substitute this instruction with a jump

instruction to the trampoline which calls strncpy(). This requires the existence of the

code that implements the new function (e.g., the patch) at runtime, either statically

linked or dynamically linked with the patched binary (e.g., the output of the tool). So,

when inspecting the same location in the patched binary we would find something

like this:

BINARY REPRESENTATION ASSEMBLY REPRESENTATION

e9 ab 3e 00 00 jmp 405000 <__TMC_END__+0xfd0>

A jump instruction to a trampoline that is already hardcoded by the tool in the

binary.

2.4.1.2 E9 tool
E9Tool is the default frontend for E9Patch [21]. E9Tool translates high-level

patching commands (i.e., what instructions to patch, and how to patch them) to low-

level commands for E9Patch. The basic usage of E9Tool is as follows:

$ e9tool -M MATCH -P PATCH binary, Where:

• binary is the binary to patch (executable or shared object)

• -M MATCH specifies which instructions in binary to patch

• -P PATCH specifies how matching instructions should be patched

After rewriting, the patched binary will be written to a.out (for executables) or a.so

(for shared objects) by default. For example, the following command will instrument

all jump instructions in the xterm binary. Whenever the jump instruction is executed

a message, indicating the execution of jump, is printed at the console:

$ e9tool -M jmp -P print xterm

E9tool frontend communicate with the backend, e9patch through a client

server architecture. The E9Patch tool uses the JSON-RPC (version 2.0) as its API.

Basically, the E9Patch tool expects a stream of JSON-RPC messages which describe

which binary to rewrite and how to rewrite it. These JSON-RPC messages are fed

from a frontend tool, such as E9Tool, but this design means that multiple different

frontends can be supported. The choice of JSON-RPC as the API also means that the

57 Functions Lacking Bounds Checking

frontend can be implemented in any programming language, including C++, python

or Rust.

By design, E9Patch tool will do very little parsing or analysis of the input

binary file. Instead, the analysis/parsing is left to the frontend, and E9Patch relies on

the frontend to supply all necessary information in order to rewrite the binary.

Specifically, the frontend must specify:

• The file offsets, virtual addresses and size of instructions in the input

binary.

• The file offsets of the patch location.

• The templates for the trampolines to be used by the rewritten binary.

• Any additional data/code to be inserted into the rewritten binary.

The main JSON-RPC messages are:

• Binary Message: begins the patching process. It must be the first

message sent to E9Patch. The message specifies the type of the file

(.so or executable) and the path name of the file.

• Trampoline Message: Used to specify the template of the trampoline

when a patch location is matched.

• Reserve Message: Used to reserve memory sections for code and data

in the output file.

• Instruction Message: The message specifies a single instruction in the

input file, defines the virtual address of the instruction, its size, and its

offset in the binary.

• Patch Message: instruct e9patch to patch an instruction already

declared by the instruction message, it also specifies the trampoline

template to use.

• Options Message: passes command-line arguments through a JSON

message.

• Emit Message: Ends the process by specifying the name and the type

of the output file.

This work will rely on the capabilities provided by the default frontend tool (e9tool)

to implement our solution instead of using a custom frontend tool.

2.4.1.3 Matching the patch location
To replace a function known to have a stack’s buffer overflow bug, we first

need to identify its location, specifically the file’s offset of the call instruction that

changes control flow to the block of that function. In the context of C language

programming, the call instruction may refer to either the address of the flawed

function if it is statically linked, or the address of a Procedural Linkage Table (PLT)

routine if the function is dynamically linked (see section 1.3.2.1).

58 Functions Lacking Bounds Checking

E9tool provides a matching language which specifies what instructions should be

patched by the corresponding patch. Matchings are specified by the (--match

MATCH) or (-M MATCH) command-line option. The form of a matching (MATCH) is a

Boolean expression of TESTS using a specific high-level grammar. The user can

combine a set of tests using common logical operators.

Tests will be verified against every instruction in the input binary, if they return a

true Boolean value, this instruction is considered as a patch location.

A test can be formed using variables. A variable evaluates to some specific

property/attribute of the underlying instruction, defined using the following

grammar:

VARIABLE ::= [SPECIFIER .] ATTRIBUTE

Two important attributes are used in our use of the tool, the first is the call attribute,

this is a Boolean attribute evaluated as true for call instructions and as false

otherwise. The second attribute is target, this has an integer type, it can be

compared with the address of a symbol statically known in the binary. Instructions

that call or jump to the specified target will be matched.

Thus, matching an instruction that call strcpy() function require a matching

expression with the following form:

'call and target == &strcpy'

The ‘&’ symbol used in this matching expression will be parsed by the frontend

e9tool as an address operator, &Name is specified in the documentation of the tool

as the runtime address of the named section/symbol/PLT/GOT entry.

2.4.1.4 The patching language
The patch language specifies how to patch matching instructions from the input

binary. Patches are specified using the (--patch PATCH) or (-P PATCH) command-line

option, and must be paired with one or more matchings. The basic form of a patch

(PATCH) uses the following high-level grammar:

PATCH ::= [POSITION] TRAMPOLINE

POSITION ::= before

| replace

59 Functions Lacking Bounds Checking

| after

TRAMPOLINE ::= empty

| break

| trap

| exit(CODE)

| signal(SIG)

| print

| CALL

| if CALL break

| if CALL goto

| plugin(NAME).patch()

A patch is an optional position followed by a trampoline. The trampoline represents

code that will be executed when control-flow reaches the matching instruction. The

trampoline can be either a built-in trampoline, a call trampoline, or a trampoline

defined by a plugin.

The position specifier can take one of the following values:

• before: The trampoline will be executed before the matching instruction. That is,

the trampoline is an instrumentation. Which means, the matched instruction will be

executed after the execution of all the instructions forming the trampoline.

• replace: The trampoline replaces the matching instruction. In this case the

instruction that is considered as a patch location will be omitted in the patched

binary.

• after: The trampoline is executed after the matching instruction.

2.4.1.5 Built-in trampolines
Those are the trampolines provided by e9tool and used for multiple purposes,

following is a list of built-in trampolines and their purposes:

• empty: is the empty trampoline with no instructions. Control-flow is still redirected

to/from empty trampolines, and this can be used to establish a baseline for

benchmarking.

• break: immediately returns from the trampoline back to the main program.

• trap: executes a single TRAP (int3) instruction.

• exit(CODE): will immediately exit from the program with status CODE.

60 Functions Lacking Bounds Checking

• signal(SIG): will raise signal SIG in the current thread (equivalent to kill(gettid(),

SIG)).

 • print: will print the assembly representation of the matching instruction to stderr.

This can be used for testing and debugging.

2.4.1.6 Custom trampolines
By developing a custom frontend tool that uses the API of e9patch, one can have a

absolute flexibility on the way of developing trampolines. This will also make the tool

able to be integrated in development environment, testing projects and so on.

The e9tool frontend provides multiple options to develop and integrate trampolines,

thus, to implement a patch. One possibility is to use something called plugins, an

E9Tool plugin is a shared object that exports specific functions. These functions will

be invoked by E9Tool at different stages of the patching process. Some tasks, such as

disassembly, will be automatically handled by the E9Tool frontend.

The E9Tool plugin API is simple and consists of the following functions:

e9_plugin_init(const Context *cxt): Called once before the binary is disassembled.

e9_plugin_event(const Context *cxt, Event event): Called once for each event (see

the Event enum).

e9_plugin_match(const Context *cxt): Called once for each match location.

e9_plugin_code(const Context *cxt): Called once per trampoline template (code).

e9_plugin_data(const Context *cxt): Called once per trampoline template (data).

e9_plugin_patch(const Context *cxt): Called for each patch location.

e9_plugin_fini(const Context *cxt): Called once after all instructions have been

patched.

Each function takes a cxt argument of type Context defined in e9plugin.h.

Plugins are invoked using the E9Tool --match/-M or --patch/-P options. For example:

 $ g++ -std=c++11 -fPIC -shared -o myPlugin.so myPlugin.cpp -I src/e9tool/

 $./e9tool -M 'plugin(myPlugin).match() > 0x333' -P 'plugin(myPlugin).patch()' xterm

Where myPlugin.so is the shared object which defines the functions that e9tool will

use in the course of each phase of the rewriting process.

However, our use of the tool takes advantage of a simple mechanism called call

trampoline. A call trampoline calls a user-defined function that can be implemented

61 Functions Lacking Bounds Checking

in a high-level programming language such as C or C++. Call trampolines are the main

way of implementing custom patches using E9Tool. The syntax for a call trampoline

is as follows:

CALL ::= FUNCTION [ABI] ARGS @ BINARY

ABI ::= < clean | naked >

ARGS ::= (ARG , ...)

The call trampoline specifies that the trampoline should call function FUNCTION

from the binary BINARY with the arguments ARGS. To use a call trampoline, the

tool’s manual dictates:

1. Implement the desired patch as a function using the C or C++ programming

language.

2. Compile the patch program using the special e9compile.sh script to generate a

patch binary.

3. Use the E9Tool frontend to call the patch function from the patch binary at the

desired locations.

E9Tool will handle all of the low-level details, such as loading the patch binary into

memory, passing the arguments to the function, and saving/restoring the CPU state.

The e9compile.sh script is a gcc wrapper that ensures the generated binary is

compatible with E9Tool.

Call trampolines support two Application Binary Interfaces (ABIs).

• clean: saves/restores the CPU state and is compatible with C/C++, this ABI causes

the same behavior defined by system V ABI (see section 1.4.2).

• naked: saves/restores registers corresponding to arguments only and give more

flexibility to the trampoline developer.

2.4.1.7 Call Trampoline
With Call Trampoline method, a trampoline is a function coded in the C or C++

language. This function may or may not be fed data. The data can be static, fixed

values determined when the patch is programmed, or it can depend on the

execution state of the patched program.

e9tool allows passing arguments by value to functions called by call trampolines. This

is achieved by specifying the argument types directly. For instance, the syntax to

pass the current value of the instruction pointer (%rip) to a function looks like this:

$./e9tool -M ... -P 'func(rip)@example' xterm

In this example, func is called with the value of %rip as an argument, and the

corresponding C function can be defined as follows:

62 Functions Lacking Bounds Checking

void func(const void *rip) {

 // RIP register value as an argument

}

The call trampoline can support up to eight arguments, and these arguments can be

of various types such as integers, strings, addresses, and more.

e9tool also supports passing arguments by pointer, allowing for more dynamic

interaction with the program's state. This feature is particularly useful for modifying

values at runtime. For example, consider a function that increments the value

pointed to by a pointer:

void inc(int64_t *ptr) {

 *ptr += 1;

}

We can define a call trampoline to invoke this function and pass the address of a

register (e.g., %rax) as follows:

$ e9compile.sh example.c

$ e9tool -M ... -P 'inc(&rax)@example' xterm

In this case, the value of %rax will be incremented each time inc is called. Thus, every

time an instruction is matched and the rewriting phase is reached the content of

%rax at that moment will be incremented. The behavior of pointers depends on the

operand type:

• Immediate operands:

point to constant values stored in read-only memory. For example, a constant

value directly embedded in the matched instruction. The address of the operand

5 in the instruction: mov eax, 5 can be referenced by pointer when that

instruction is matched. This can be done by passing the keyword: &mem[2] as an

argument to the trampoline.

• Register operands:

Point to temporary locations holding the register values. This is a reference to a

CPU register that holds data. For example, in the instruction mov eax, ebx, both

eax and ebx are register operands. The only way to manipulate the value of a

register at runtime is to pass the address of that register as an argument to the

trampoline.

• Memory operands:

Provide the exact runtime pointer value calculated by the operand itself. This is a

reference to a location in memory. The operand specifies an address from which

63 Functions Lacking Bounds Checking

data is fetched or to which data is stored. For example, in the instruction mov

eax, [ebx], [ebx] is a memory operand referring to the memory address

contained in ebx.

2.4.1.8 Implementation
It is common to find that the ELF executable file of a C program is stripped.

ELF stripping is the process of removing unnecessary information from an Executable

and Linkable Format (ELF) file, such as debugging symbols and relocation

information, to reduce its size and improve performance. This is typically done using

the strip Linux command.

If strcpy() function (or a similar function) is dynamically linked to the vulnerable

program, then our solution would work even if the executable ELF file is stripped

(e.g., the function symbol is presented in the PLT section). If the function is statically

linked to the program to-be-patched, then the ELF executable file must not be

stripped in order to patch it.

Using e9patch we can substitute whatever unsafe function lacking bounds checking.

For the sake of a concrete example, we chose to apply the method on a specific

function. If applied automatically, this method does not protect against the

corruption of local variables. Applying e9patch automatically means that no manual

effort is needed, the tool will replace strcpy() with strncpy(), providing to strncpy a

size which is also computed automatically, this is the value contained in rbp minus

the value contained in rdi (see Figure 38).

Though the implementation only reinforces the calling conventions, it can maintain

the integrity of local variables if we accompany it with static analysis of the program.

For example by extracting the size of each destination buffer used by strcpy()

function one can implements a trampoline that replaces the function with strncpy()

function and specifies the appropriate size as an argument to strncpy.

This is an efficient way to enforce the integrity of C program’s control flow.

Consider the program in Figure 37 which uses the unsafe strcpy() function:

#include <stdio.h>

#include <string.h>

void printName(char* buffer) {

char name[16];

//la fonction a remplacer

strcpy(name, buffer);

64 Functions Lacking Bounds Checking

printf("Hello %s\n", name);

}

int main(int argc, char* argv[]) {

if(argc > 1) printName(argv[1]);

return 0;

}

Figure 37: The vulnerable program

The tool will replace strcpy(dest, src) function with the safer strncpy(dest, src, size)

function, which is considered more secure due to its explicit size determination.

The patch is created in the form of a function (see Figure 38) and compiled in a

specific way compatible with the e9tool. This use of the tool is explained in section

2.4.1.8, a method known as Call Trampoline.

#include "/e9patch/examples/stdlib.c"

void patch (void *rbp,void *rdi ,char

*rsi){

long size= (long) rbp - (long) rdi;

strncpy(rdi,rsi,size-1);

}

Figure 38: Trampoline implementation

The values of the RBP and RDI registers are passed by value to calculate the available

space between the buffer and the address where the previous frame address is

stored.

The tool comes with a compiler wrapper, a script that directs GCC to generate a

compatible ELF file.

The compilation is done by the following command in a Linux environment:

$ e9compile.sh patch.c

After preparing the patch, we instructed e9tool to match a call to strcpy() and

replace it with the trampoline following the -P flag. This is done by the following

command:

65 Functions Lacking Bounds Checking

${e9}/e9tool -s -o file -O0 -M 'call and target == &strcpy' -P 'replace

patch(rbp,rdi,rsi)@newpatch' --debug ../strippednoCanari

Where ${e9}/e9tool substituted by the file path of the tool.

-s flag instruct e9tool to hardcode the trampoline in the output file, instead of using

a custom loader, so, when disassembling the final result we can see the difference

with the former version of the ELF file.

-O0 option, disables any optimization technique to reduce the size of the file.

The result a is a program (i.e., the ELF named file) identical to the original program

except that the function strcpy() is replaced by its equivalent strncpy().

To illustrate the difference between the input file and the output file, Figure 39

highlights the patch location in the original file, that will be matched by e9tool.

Figure 39: The main program before applying the patch process

66 Functions Lacking Bounds Checking

After being matched, the tool will rewrite the call instruction with a jump to the

trampoline which is appended at the end of the binary along with the

implementation of the function strncpy.

The tool also changes the entry point of the program to a specific routine,

responsible for allocating space in memory for the trampoline and the strncpy code

[19].

In the output binary, a jump instruction replaces the call instruction, so when RIP will

point to this memory location, control flow will be passed to the trampoline. The

trampoline starts by saving the state of the CPU (register’s values) unless a naked ABI

is specified as argument to the trampoline. The trampoline sets the arguments for

the strncpy function, including the size to be copied which is the distance between

the location pointed to by RDI and the location pointed to by the RBP register,

calculated at runtime. Then, a call instruction in the trampoline block changes

control flow to the block of strncpy function. After the execution of strncpy code,

control flow returns to the trampoline to restore the value of any saved register and

returns to the main program (see Figure 40).

Figure 40: The workings of the patched program

67 Functions Lacking Bounds Checking

Figure 41 shows the instruction in the block of printName function that calls the

function strcpy.

Figure 41: The assembly representation of printName before the patching process

The output of e9patch rewrites this instruction by a jmp instruction to the

trampoline as Figure 42 shows:

Figure 42: A substituted call instruction

Triggering an out-of-bounds memory writing by providing a long input to the original

program gave a segmentation fault error mentioned at Figure 43:

68 Functions Lacking Bounds Checking

Figure 43: Executing the flawed program

Providing the same input to the patched program shows the expected safe behavior:

Figure 44: Executing the patched program

2.5 Guidelines for secure programming
MSC24-C is a specific guideline within the CERT C Secure Coding Standard,

which provides rules and recommendations for writing secure C code [22]. The CERT

C Secure Coding Standard is a set of guidelines developed by the CERT Coordination

Center at Carnegie Mellon University to help programmers write more secure and

reliable C code. MSC24-C specifically addresses "Be careful with the use of setjmp()

and longjmp()", emphasizing the potential security risks associated with these

functions and providing recommendations for using them safely.

This guideline is published online, bellow are their important advices to

programmers in the context of our work:

Do not use deprecated or obsolescent functions when more secure equivalent

functions are available. Deprecated functions are defined by the C Standard.

Obsolescent functions are defined by this recommendation.

Old

New

Obsolescent

Function

Recommended

Alternative

bsearch() bsearch_s()

fprintf() fprintf_s()

fscanf() fscanf_s()

69 Functions Lacking Bounds Checking

Old

New

Obsolescent

Function

Recommended

Alternative

fwprintf() fwprintf_s()

fwscanf() fwscanf_s()

getenv() getenv_s()

gmtime() gmtime_s()

localtime() localtime_s()

mbsrtowcs() mbsrtowcs_s()

mbstowcs() mbstowcs_s()

memcpy() memcpy_s()

memmove() memmove_s()

printf() printf_s()

qsort() qsort_s()

scanf() scanf_s()

snprintf() snprintf_s()

sprintf() sprintf_s()

sscanf() sscanf_s()

strcat() strcat_s()

strcpy() strcpy_s()

70 Functions Lacking Bounds Checking

Old

New

Obsolescent

Function

Recommended

Alternative

strerror() strerror_s()

strlen() strnlen_s()

strncat() strncat_s()

strncpy() strncpy_s()

strtok() strtok_s()

swprintf() swprintf_s()

swscanf() swscanf_s()

vfprintf() vfprintf_s()

vfscanf() vfscanf_s()

vfwprintf() vfwprintf_s()

vfwscanf() vfwscanf_s()

vprintf() vprintf_s()

vscanf() vscanf_s()

vsnprintf() vsnprintf_s()

vsprintf() vsprintf_s()

vsscanf() vsscanf_s()

vswprintf() vswprintf_s()

71 Functions Lacking Bounds Checking

Old

New

Obsolescent

Function

Recommended

Alternative

vswscanf() vswscanf_s()

vwprintf() vwprintf_s()

vwscanf() vwscanf_s()

wcrtomb() wcrtomb_s()

wcscat() wcscat_s()

wcscpy() wcscpy_s()

wcslen() wcsnlen_s()

wcsncat() wcsncat_s()

wcsncpy() wcsncpy_s()

wcsrtombs() wcsrtombs_s()

wcstok() wcstok_s()

wcstombs() wcstombs_s()

wctomb() wctomb_s()

wmemcpy() wmemcpy_s()

wmemmove() wmemmove_s()

wprintf() wprintf_s()

wscanf() wscanf_s()

Table 45: Deprecated functions and their alternative

72 Functions Lacking Bounds Checking

2.6 Conclusion
Using functions lacking bounds checking carefully or replace them with secure

functions will protect the safety of the stack memory region at an early stage. Thus,

cultivating developers of security related aspects is important for developing a

secure software.

73 General conclusion and perspectives

General conclusion and perspectives

The security of the stack memory must not depend on one line of defense, as

we discovered throughout the second chapter, there is no one security measure that

fits every situation. It is the combination of a set of defense mechanisms that makes

our stack memory robust against attacks. The more defenses are there the more

secure the stack will be.

In this work, I believe that the best solution to stack-based buffer overflow caused by

uncareful use of functions lacking bounds checking is to replace the function with

one that do consider buffer’s bounds. This can be done either manually when the

source code is available or using a binary rewriting technique like the one presented

at the end of the second section.

74 References

References

[d1] Intel® Itanium™ Processor specific Application Binary Interface (ABI) – May 2001

[1] Limited direct execution mechanism: https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-

mechanisms.pdf

[2] L. Hatton, "Software failures-follies and fallacies," in IEE Review, vol. 43, no. 2, pp. 49-52,

20 March 1997, doi: 10.1049/ir:19970201. keywords: {Software reliability},

[3] Programming with C - https://www.caluniv.ac.in/academic/LibSc/Study/C-Lang.pdf

[4] C Programming Language - https://en.wikipedia.org/wiki/C_(programming_language)

[5] Matthew C. Jadud. 2006. Methods and tools for exploring novice compilation behaviour.

In Proceedings of the second international workshop on Computing education research

(ICER '06). Association for Computing Machinery, New York, NY, USA, 73–84.

https://doi.org/10.1145/1151588.1151600

[6] GNU Compiler Collection - https://gcc.gnu.org/

[7] Compiler program - https://en.wikipedia.org/wiki/Compiler

[8] Linking process, Carnegie Mellon University: Computer Systems: A Programmer's

Perspective, chapter 7, http://csapp.cs.cmu.edu/2e/ch7-preview.pdf

[9] X86-64 Architecture Guide - http://6.s081.scripts.mit.edu/sp18/x86-64-architecture-

guide.html

[10] objdump(1) - Linux man page - https://linux.die.net/man/1/objdump

[11] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. System V application

binary interface, AMD64 architecture processor supplement. May 2009. Draft 0.99.

[12] CS61 2018 Harvard course, Assembly 2: Calling convention -

https://cs61.seas.harvard.edu/site/2018/Asm2/#:~:text=Note%20what's%20missing%3A%2

0the%20data,only%20accessed%20from%20the%20top.

[13] Bounds checking - https://en.wikipedia.org/wiki/Bounds_checking

[14] GNU C Library - https://sourceware.org/glibc/

[15] GNU Debugger - https://sourceware.org/gdb/documentation/

[16] System Memory Management Unit -

https://www.intel.com/content/www/us/en/docs/programmable/683567/21-3/system-

memory-management-unit-falconmesa.html

[17] Stack canaries - G. Lettieri - https://lettieri.iet.unipi.it/hacking/canaries.pdf

[17.a] Auxiliary vector in ELF programs,

https://articles.manugarg.com/aboutelfauxiliaryvectors

[17.b] getauxval() and the auxiliary vector-

https://lwn.net/Articles/519085/?spm=a313e.7916648.0.0.8i0HiO

https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-mechanisms.pdf
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-mechanisms.pdf
https://www.caluniv.ac.in/academic/LibSc/Study/C-Lang.pdf
https://en.wikipedia.org/wiki/C_(programming_language)
https://doi.org/10.1145/1151588.1151600
https://gcc.gnu.org/
https://en.wikipedia.org/wiki/Compiler
http://6.s081.scripts.mit.edu/sp18/x86-64-architecture-guide.html
http://6.s081.scripts.mit.edu/sp18/x86-64-architecture-guide.html
https://linux.die.net/man/1/objdump
https://cs61.seas.harvard.edu/site/2018/Asm2/#:~:text=Note%20what's%20missing%3A%20the%20data,only%20accessed%20from%20the%20top
https://cs61.seas.harvard.edu/site/2018/Asm2/#:~:text=Note%20what's%20missing%3A%20the%20data,only%20accessed%20from%20the%20top
https://en.wikipedia.org/wiki/Bounds_checking
https://sourceware.org/glibc/
https://sourceware.org/gdb/documentation/
https://www.intel.com/content/www/us/en/docs/programmable/683567/21-3/system-memory-management-unit-falconmesa.html
https://www.intel.com/content/www/us/en/docs/programmable/683567/21-3/system-memory-management-unit-falconmesa.html
https://lettieri.iet.unipi.it/hacking/canaries.pdf
https://articles.manugarg.com/aboutelfauxiliaryvectors
https://lwn.net/Articles/519085/?spm=a313e.7916648.0.0.8i0HiO

75 References

[18] mmap – map pages of memory –

https://pubs.opengroup.org/onlinepubs/009604499/functions/mmap.html

[19] Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury. 2020. Binary rewriting without

control flow recovery. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI 2020). Association for Computing Machinery,

New York, NY, USA, 151–163. https://doi.org/10.1145/3385412.3385972

[20] e9tool – User’s Guide - https://github.com/GJDuck/e9patch/blob/master/doc/e9tool-

user-guide.md

[21] e9patch – Programmer’s Guide -

https://github.com/GJDuck/e9patch/blob/master/doc/e9patch-programming-guide.md

[22] MSC24-C. Do not use deprecated or obsolescent functions -

https://wiki.sei.cmu.edu/confluence/display/c/MSC24-

C.+Do+not+use+deprecated+or+obsolescent+functions

https://pubs.opengroup.org/onlinepubs/009604499/functions/mmap.html
https://github.com/GJDuck/e9patch/blob/master/doc/e9tool-user-guide.md
https://github.com/GJDuck/e9patch/blob/master/doc/e9tool-user-guide.md
https://github.com/GJDuck/e9patch/blob/master/doc/e9patch-programming-guide.md
https://wiki.sei.cmu.edu/confluence/display/c/MSC24-C.+Do+not+use+deprecated+or+obsolescent+functions
https://wiki.sei.cmu.edu/confluence/display/c/MSC24-C.+Do+not+use+deprecated+or+obsolescent+functions

