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Abstract 

 

 
 

 

 

 

 

The security of computer systems evolves over time through an ongoing conflict 

between designers and attackers. Whenever an attack is discovered, there is a 

great opportunity to enhance the security of computer systems by addressing the 

cause of the attack, thus fortifying future systems against similar vulnerabilities 

and implementing defenses in current systems. 

 

This work begins by eliminating unnecessary abstractions that hinder the 

understanding of software bugs threatening the safety of a memory region known 

as the stack. After gaining insights on how high-level C language statements, and 

especially the call construct, affect our memory region, this work will delve into 

low-level details (such as assembly language) to demonstrate how the absence of 

bounds checking in some glibc’s functions can alter the control flow of a program, 

causing it to behave unexpectedly, when this flaw is exploited by malicious users. 

 

Using the function strcpy() from the C standard library as an example, it will be 

shown how careless usage of this function by programmers can lead to exploitable 

bugs. The exploitation process used by attackers will be discussed. Subsequently, 

the security measures designers implement to mitigate these exploits will be 

examined, along with how attackers bypass these mitigations and the subsequent 

countermeasures. 

 

This work offers a solution to strengthen programs afflicted with this bug when 

the source code of a vulnerable C program is unavailable. Additionally, guidelines 

provided by the CERT Coordination Center at Carnegie Mellon University will be 

presented to help prevent such vulnerabilities in the first place at the software 

development phase. 
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General Introduction 

Abstractions are valuable tools in computer science; they enhance creativity 

and accelerate the evolution of computer systems. However, they obscure the 

underlying workings of computer systems, making it nearly impossible to understand 

how software bugs are exploited by attackers, and hence how to develop robust 

security countermeasures. Therefore, this work begins by attempting to strip away 

fundamental abstractions related to the stack memory region using simple language. 

After delving into the details underlying those abstractions, it will be easier to 

understand how functions lacking bounds checking can lead to exploitation by 

malicious users. We will examine the exploitation techniques used by attackers to 

exploit the strcpy() function, to give a concrete example. The primary aim of an 

exploitation technique is to alter the behavior of a program from its intended 

functionality. We will also present examples of the countermeasures devised by 

designers to thwart these exploits, the strategies attackers employ to bypass these 

mitigations, and how these bypassing methods are countered by the development of 

new security measures.  

Software constitutes an essential component of any computer system, as it 

dictates to the hardware the tasks to be performed. It can be executed directly on 

the hardware, with restrictions [1], or interpreted by a specific runtime environment. 

It is almost impossible to create software that contains no bugs; The number of bugs 

is at least proportional to the size of the program [2], and not dependent on the 

programming language choice. This project focuses on addressing bugs that 

compromise the stack memory security in the context of applications developed in C 

language. 
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Chapter 1  Reducing the level of abstraction 

1.1 Introduction 
As C is a procedural language, C applications are built of a set of functions. 

Before delving into the issues surrounding the memory safety of a C program's stack, 

it is crucial to comprehend the compilation process when functions call each other 

and the role of the stack in this operation. 

As computing hardware becomes faster and more powerful, software 

applications become more complex and sophisticated. New generations of computer 

systems spawn new generations of software that can do more powerful things than 

previous generations. As the software gets more sophisticated, the job of developing 

an application becomes more difficult. To keep the programmer from being quickly 

overwhelmed, it is critical that the process of programming be kept as simple as 

possible. Automating any part of this process (i.e., having the computer do part of 

the work) is a welcomed enhancement in the history of computer science. 

C is a compiled high-level language, the compilation is done by tools (prebuilt 

software), which makes the developer more focused on his job, innovative, and 

comfortable than programming with an assembler language. 

The use of tools such as compilers and linkers also aids developers in 

identifying and eliminating subtle programming errors, serving as an additional line 

of defense against exploitable programming bugs.

   

       Figure 1: Layers of abstraction 

C programming is considered the base for other programming languages, 

which is why it is known as the mother language [3]. It is considered the mother 

language of all modern programming languages because most of the compilers, 

JVMs, Kernels, etc. are written in C language, and most of the programming 

languages follow C syntax, for example, C++, Java, C#, etc. 
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The goal of this chapter is to comprehend the low-level intricacies inherent in 

C language statements that render programming bugs related to stack memory 

exploitable by attackers, as well as to understand how mitigation techniques 

function. To achieve this goal, we will delve into the realm of assembly language 

abstraction. 

1.2 C as a Procedural Language 
C [4] is an imperative, procedural language in the ALGOL tradition. It has a 

static type system. In C, all executable code is contained within subroutines (also 

called "functions"). Function parameters are passed by value, although arrays are 

passed as pointers, i.e., the address of the first item in the array. Pass-by-reference is 

simulated in C by explicitly passing pointers to the thing being referenced. 

 C is an imperative procedural language, supporting structured programming, 

lexical variable scope, and recursion, with a static type system. It was designed to be 

compiled to provide low-level memory access and language constructs that map 

efficiently to machine instructions, all with minimal runtime support. Despite its low-

level capabilities, the language was designed to encourage cross-platform 

programming. A standards-compliant C program written with portability in mind can 

be compiled for a wide variety of computer platforms and operating systems with 

few changes to its source code. 

A function is a named block of code that can be called from anywhere in the 

program, basically by another function. This design is conceived to avoid repeating a 

frequently used block of code in the binary (i.e., the executable) of the application.  

A function in C can be called either with arguments or without arguments. These 

functions may or may not return values to the calling functions. Hence the function 

prototype of a function in C is as below: 

 

      Figure 2: Function Prototype 

A parameter, if exists, is either a variable passed by value, by address (e.g., pointer to 

the variable), or a constant value. 
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A function in C can return either a constant value, the value of a variable accessible 

by that function (i.e., in the function’s scope), or a memory address.  

1.3 Compilers and linkers’ roles in C software’s development 

process 
High-level languages can be classified into two categories: Compiled languages 

and interpreted languages. 

C is a compiled language; A compiled language is converted into machine code so 

that the processor can execute it. An interpreted language on the other hand is a 

language executed by an interpreter (a software), the interpreter executes 

instructions directly without earlier compiling a program into machine language.  

Compiled programs run faster than interpreted programs because there is no 

interpretation overhead. 

To inspect at a low level how procedure calls get translated to machine language and 

to set the stage for the stack memory: the core concept of this work. This part 

discusses, in a high level of detail, the process of converting compiled programs from 

a high-level language to a machine-specific language. 

C programs are written in human-readable constructs forming the source code of 

the application. The source code is not directly executable by a computer. It takes a 

three-step process [5] to transform the source code into executable code. These 

three steps are: Preprocessing, compiling and linking. 

• Preprocessing: At this stage, preprocessor directives (commands that begin 

with a # character) are parsed by a preprocessor which leads to modifications 

in the source code before being passed to the compiler. 

• Compiling: This phase causes the modified source code to be compiled into 

binary object code. This object code is not yet executable, it lacks some 

critical routines and metadata. 

• Linking:  The object code is combined with the required supporting code to 

make an executable program. This step typically involves adding in any 

libraries that are required. 

In most modern compilers, these three activities are handled by a single application, 

although it is possible to tell the compiler not to do certain functions. (For example, 

to compile but not link a program.) There are a variety of C compilers available for 

many different platforms. Some compilers must be purchased and some are free to 

use. Three of the most common are GNU GCC, Clang/LLVM and Microsoft Visual C. 

GNU GCC is found on many platforms such as Linux, many flavors of UNIX, and even 

Windows. Clang/LLVM is available for all modern Mac OSX systems and many BSD 

variants. Microsoft Visual C is a core component of Microsoft's Visual Studio 

platform. We will use GNU gcc [6] in our use cases, mainly due to its availability on 

many different platforms. 
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1.3.1 What is the compiler’s job? 
In computing, a compiler [7] is a computer program that translates computer 

code written in one programming language (the source language) into another 

language (the target language). The name "compiler" is primarily used for programs 

that translate source code from a high-level programming language to a low-level 

programming language (e.g., assembly language, object code, or machine code) to 

create an executable program. 

A compiler is likely to perform some or all of the following operations, often called 

phases: preprocessing, lexical analysis, parsing, semantic analysis (syntax-directed 

translation), conversion of input programs to an intermediate representation, code 

optimization, and machine-specific code generation. Compilers generally implement 

these phases as modular components, promoting efficient design and correctness of 

transformations of source input to target output. Program faults caused by incorrect 

compiler behavior can be very difficult to track down and can be the source of a 

security flaw in the program; therefore, compiler implementers invest significant 

effort to ensure compiler correctness. 

The compiler also comes with a set of plugins each responsible for some tasks, an 

example of such plugins, discussed in section 2.2.5, is one that implements a security 

mechanism against stack’s buffer overflow attacks. 

 

Figure 3: The compiler’s phases 
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After the compiler has successfully finished its job, another tool called the linker 

kicks in. The linker’s job is to combine all of the object files and produce the desired 

output file (e.g., typically an executable file). This process on which the linker acts, is 

called linking. 

1.3.2 The linker’s job 
Linking[8] is the process of collecting and combining various pieces of code 

and data, from different sources (e.g., libraries and object files), into a single file that 

can be loaded (copied) into memory and executed. Linking can be performed at 

compile time, when the source code is translated into machine code, at load time, 

when the program is loaded into memory and executed by the loader, and even at 

run time, by application programs. On early computer systems, linking was 

performed manually. In modern systems, linking is performed automatically by 

programs called linkers. 

Linkers play a crucial role in software development because they enable separate 

compilation. Instead of organizing a large application as one monolithic source file, 

we can decompose it into smaller, more manageable modules that can be modified 

and compiled separately. When we change one of these modules, we simply 

recompile it and relink the application, without having to recompile the other files. 

C programs are often linked with functions that pertain to a standard library which in 

most cases cover a big part of the totality of the application. The natural way to link 

code and data from different object files is by combining them in the same 

executable file, this method is called static linking. 

1.3.2.1 Static linking and dynamic linking 
Dynamic linking and static linking are two methods used to link libraries to a 

program, each with distinct advantages and trade-offs. In the context of a C 

program, understanding these methods is crucial to dig in the details behind C 

constructs. 

Static linking involves copying all the necessary library functions into the final 

executable at compile time, creating a self-contained binary. This results in larger 

executables, as each program includes its own copy of the library code. For example, 

if multiple C programs use the same standard library functions, each statically linked 

program will have its own instance of these functions, leading to redundancy. Static 

linking also means that any updates to the library require recompiling all dependent 

programs to benefit from the changes. 

Conversely, dynamic linking links the program to shared libraries at runtime. Instead 

of embedding the library code into the executable, the program includes references 

to shared library files, typically with a .so (shared object) extension on Unix-like 

systems. This approach significantly reduces the executable size and allows multiple 

programs to share a single copy of the library code, conserving memory and disk 

space. For a dynamically linked C program, this means that the common standard 
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library functions are stored in shared .so files like those provided by GNU C Library 

(glibc). 

When a dynamically linked C program is executed, it relies on two critical sections in 

the final binary: the Procedure Linkage Table (PLT) and the Global Offset Table 

(GOT). The PLT is used for calling functions in shared libraries. Initially, when a 

function from a shared library is called, the PLT entry for that function redirects the 

call to the dynamic linker. The dynamic linker then resolves the function's address 

and updates the GOT with this address. Subsequent calls to the function use the 

resolved address directly, improving performance. 

The GOT stores the addresses of global variables and functions. During program 

execution, the dynamic linker updates the GOT with the actual memory addresses of 

the shared library's functions and variables. This mechanism allows the program to 

access these addresses efficiently, even though their exact locations are not known 

until runtime. 

GNU C Library (glibc) plays a pivotal role in this process. It provides essential APIs for 

system calls, input/output operations, memory management, and more. When a C 

program dynamically linked against glibc is executed, the dynamic linker loads the 

necessary .so files and resolves the function and variable addresses using the PLT 

and GOT. This ensures the program can run with the correct library code, leveraging 

the latest updates to the shared libraries without needing recompilation. 

1.3.3 Summary 
To summarize, the life cycle of a C program involves several stages from the 

creation of the source code to the generation of an executable file. Here are the 

stages that the C program passes through, in chronological order: 

Writing Code: The programmer writes the C source code in a text editor or an 

Integrated Development Environment (IDE) and saves it with a .c extension. 

Compilation: The source code is passed through a compiler (such as GCC, Clang, or 

MSVC) which translates it into machine-readable binary code called object code (.o 

files in Unix-like systems, .obj files in Windows). This process involves syntax 

checking, semantic analysis, and code optimization. 

Preprocessing: Before compilation, the source code undergoes preprocessing. This 

stage involves handling preprocessor directives (such as #include and #define), which 

are expanded and substituted into the code. 

Linking: If the program consists of multiple source files or uses external libraries, the 

object files need to be linked together. The linker takes care of this process by 

resolving references to functions and variables across different object files and 

libraries. It creates an executable file by combining the object code with any 

necessary system libraries. 
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Generating Executable: Finally, the linker produces an executable file (usually with a 

.exe extension in Windows or no extension in Unix-like systems) containing the 

machine code that the computer's processor can execute. 

Execution: The generated executable file can be run by the operating system, and 

the instructions within it are executed by the CPU, performing the tasks defined in 

the original C program. 

 

    Figure 4: C program life cycle 

 

 

1.4 Function Calls: From High-level Statement to Machine 

Instructions 
Compilers and linkers operate within a framework of rules, standardized in 

publicly available guidelines established by trusted authorities, known as 

conventions. One subset of these rules is known as calling conventions, which form a 

significant part of a larger set of regulations called the ABI (Application Binary 

Interface). One of the ABI’s functions is to dictate the process of translating high-

level statements into machine-specific instructions. 

Procedures are a key abstraction in software developed in C language. They provide 

a way to package code that implements some functionality with a designated set of 

arguments and an optional return value. This function can then be invoked from 

different points in a program. Understanding the effects of procedure calls on the 

stack requires understanding the calling convention specifications and 



13            Reducing the level of abstraction 
 

implementations.

 

   Figure 5: A function call  

 

Many different attributes must be handled when providing machine-level support 

for procedures. For discussion purposes, suppose procedure f calls procedure g (see 

Figure 5). Control will be passed to g, g then executes and returns back to f. These 

actions involve one or more of the following mechanisms: 

Passing control: The program counter (a register that keeps track of the executing 

instruction, see the next section) must be set to the starting address of the code for 

g upon entry and then set to the instruction in f following the call to g upon return. 

Passing data: f must be able to provide one or more parameters to g, and g must be 

able to return a value back to f. Allocating and deallocating memory. g may need to 

allocate space for local variables when it begins and then free that storage before it 

returns control to f. The x86-64 (a computer architecture discussed in the next 

section) implementation of procedures involves a combination of special instructions 

and a set of conventions on how to use the machine resources, such as the registers 

and the program memory. Great effort has been made to minimize the overhead 

involved in invoking a procedure.  

As a consequence, it follows what can be seen as a minimalist strategy, 

implementing only as much of the above set of mechanisms as is required for each 
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particular procedure. In our work, we inspected the different mechanisms. Step by 

step, first describing control, then data passing, and, finally, memory management. 

Before having a look at the rules defining procedure calls translation to machine 

language instructions and reading them later in assembly language (a language that 

uses human-readable mnemonics) it is crucial that we have a background on the 

components of hardware which will execute our software. 

1.4.1 Overview of x86-64 Machine Architecture 

1.4.1.1 Registers 
A register is the closest unit of storage to a CPU (Central Processing Unit). Storing or 

retrieving data from a register is faster than dealing with caches or primary memory. 

In the x86-64 computer architecture, there is a set of 16 64-bit general purpose 

registers, directly handled by user-software developers.   

The following table summarizes the size and the use of the most commonly used 

general-purpose x86-64 registers: 

64-

bit 

32-

bit 

16-

bit 
8-bit 

Special Purpose 

for functions 

When calling 

a function 

When writing 

a function 

Rax eax ax ah,al Return Value Might be changed Use freely 

Rbx ebx bx bh,bl   
Will not be 

changed 

Save before 

using! 

Rcx ecx cx ch,cl 
4th integer 

argument 
Might be changed Use freely 

Rdx edx dx dh,dl 
3rd integer 

argument 
Might be changed Use freely 

rsi esi si sil 
2nd integer 

argument 
Might be changed Use freely 

rdi edi di sil 
1st integer 

argument 
Might be changed Use freely 

rbp ebp bp bpl Frame Pointer Maybe Be Careful Maybe Be Careful 

rsp esp sp spl Stack Pointer Be Very Careful! Be Very Careful! 

r8 r8d r8w r8b 
5th integer 

argument 
Might be changed Use freely 

r9 r9d r9w r9b 
6th integer 

argument 
Might be changed Use freely 
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r10 r10d r10w r10b   Might be changed Use freely 

r11 r11d r11w r11b   Might be changed Use freely 

r12 r12d r12w r12b   
Will not be 

changed 

Save before 

using! 

r13 r13d r13w r13b   
Will not be 

changed 

Save before 

using! 

r14 r14d r14w r14b   
Will not be 

changed 

Save before 

using! 

r15 r15d r15w r15b   
Will not be 

changed 

Save before 

using! 

   Table 6: User-controlled x86-64 registers 

1.4.1.2 Machine-specific instructions in assembly representation 

A CPU is capable of executing a repertory of functions called instructions, among 
other operating system-specific instructions, the most used instructions are either 
arithmetic and logic instructions, data movement instructions, or control flow in-
structions. 

An instruction in assembly representation is an opcode (for operation code) with 
zero or more operands (the arguments on which the CPU operates). Each machine-
specific instruction has only one equivalent in assembly language, represented in an 
easy-to-recognize mnemonic.  

Each mnemonic opcode presented in Figure 7 represents a family of instructions[9]. 
Within each family, there are variants which take different argument types (regis-
ters, immediate values, or memory addresses) and/or argument sizes (byte, word, 
double-word, or quad-word). The former can be distinguished from the prefixes of 
the arguments, and the latter by an optional one-letter suffix on the mnemonic. 

For example, a mov instruction that sets the value of the 64-bit %rax register to the 
immediate value 3 can be written as 

    movq    $3, %rax 

Immediate operands are always prefixed by $. 

For instructions that modify one of their operands, the operand that is modified ap-
pears second. This differs from the convention used by Microsoft’s and Borland’s as-
semblers, which are commonly used on DOS and Windows. 
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Opcode Description 

Copying values 

mov src, dest Copies a value from a register, immediate 

value or memory address to a register or 

memory address. 

cmove %src, %dest Copies from register %src to 

register %dest if the last comparison 

operation had the corresponding result 

(cmove: equality, cmovne: inequality, cmovg: 

greater, cmovl: less, cmovge: greater or 

equal, cmovle: less or equal). 

cmovne %src, %dest 

cmovg %src, %dest 

cmovl %src, %dest 

cmovge %src, %dest 

cmovle %src, %dest 

Stack management 

enter $x, $0 Sets up a procedure’s stack frame by first 

pushing the current value of %rbp on to the 

stack, storing the current value 

of %rsp in %rbp, and finally 

decreasing %rsp to make room for x byte-

sized local variables. 

Leave Removes local variables from the stack 

frame by restoring the old values 

of %rsp and %rbp. 

push src Decreases %rsp and places src at the new 

memory location pointed to by %rsp. 

Here, src can be a register, immediate 

value or memory address. 

pop dest Copies the value stored at the location 

pointed to by %rsp to dest and 

increases %rsp. Here, dest can be a register 

or memory location. 

Control flow 

call target Jump unconditionally to target and push 

return address (current PC + 1) onto stack. 

Ret Pop the return address off the stack and 

jump unconditionally to this address. 

jmp target Jump unconditionally to target, which is 

specified as a memory location (for 

example, a label). 
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je target Jump to target if the last comparison had 

the corresponding result (je: equality; jne: 

inequality). 
jne target 

Arithmetic and logic 

add src, dest Add src to dest. 

sub src, dest Subtract src from dest. 

imul src, dest Multiply dest by src. 

idiv divisor Divide rdx:rax by divisor. Store quotient 

in rax and store remainder in rdx. 

shr reg Shift reg to the left or right by value 

in cl (low 8 bits of rcx). 
shl reg 

ror src, dest Rotate dest to the left or right by src bits. 

cmp src, dest Set flags corresponding to whether dest is 

less than, equal to, or greater than src 

   Table 7: Commonly used x86-64 instructions 

This way of writing assembly code, presented in Table 7, is called AT&T syntax. 

Another syntax commonly used to read disassembler output is called Intel syntax. In 

the scope of our project, Intel syntax differs from AT&T syntax in that, the dest 

register (i.e., the register which will be modified) is the first operand of the 

instruction instead of being the second one. 

This project uses a disassembler called objdump[10] through the examples 

presented. A disassembler is an application software responsible to convert a 

program form its binary representation to its assembly representation. 

1.4.2 Overview of the Calling Conventions of System V ABI 
The standard calling sequence requirements apply only to global functions. 

Local functions that are not reachable from other compilation units may use 

different conventions. Nevertheless, the ABI [11] recommends that all functions use 

the standard calling sequence when possible. 

From Intel’s documentation [d1], “The System V Application Binary Interface defines 

a system interface for compiled application programs. Its purpose is to establish a 

standard binary interface for application programs on systems that implement the 

interfaces defined in the X/Open Common Application Environment Specification, 

Issue 4.2 (also known as the “Single UNIX Specification”) and the System V Interface 

Definition, Issue 4. This includes, but is not limited to, systems that have 

implemented UNIX System V, Release 4.” 
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The System V Application Binary Interface (ABI) defines the calling conventions for 

how functions in a program interact at the binary level, specifically focusing on how 

arguments are passed, how the call and return instructions operate, and how the 

stack is managed.  

One of the primary purposes of the System V ABI's calling conventions is to establish 

a standardized method for argument passing between functions. In this convention, 

the first six integer or pointer arguments are passed using specific registers (RDI, RSI, 

RDX, RCX, R8, and R9 on x86-64 architecture). If there are more than six arguments, 

the additional ones are passed on the stack. Arguments of type floating point, are 

passed using the registers XMM0 to XMM7. 

This method minimizes memory access and leverages fast register operations, 

improving performance. 

The call instruction is used to transfer control to a function. When a function is 

called, the return address (the address of the instruction immediately following the 

call) is pushed onto the stack. This ensures that the CPU knows where to return once 

the function execution is complete. The ret instruction, which stands for return, is 

used at the end of the function to pop the return address from the stack and jump 

back to that location, resuming execution of the caller function. 

The stack plays a crucial role in function calls, particularly in managing local 

variables, passing additional arguments, and saving the state of registers. When a 

function is called, a new stack frame is created. This frame includes space for the 

return address, the function's local variables, and the saved registers that need to be 

restored when the function returns. 

Callee-save and caller-save conventions are essential for preserving register values 

across function calls. Callee-save registers (such as RBX, RBP, and R12-R15 on x86-64) 

must be preserved by the called function. This means that if the callee modifies 

these registers, it must save their original values at the start of the function and 

restore them before returning. On the other hand, caller-save registers (such as RAX, 

RCX, RDX, and R8-R11) are the responsibility of the calling function. If the caller 

needs to preserve the values in these registers across a function call, it must save 

them before calling the function and restore them afterward. 

By adhering to these conventions, the System V ABI ensures consistency and 

predictability in how functions interact, enabling code compiled from different 

sources or written in different languages to work together seamlessly. This 

standardization is vital for system-level programming, compiler writers for example 

are inspired by those standards. 

1.4.2.1 Caller save, callee save, and return value 
The ABI defines how registers keep or lose their values across calls, we label 

the function invoking other functions as a caller and the called function as callee. 

Registers %rbp, %rbx, and %r12 through %r15 “belong” to the calling function, and 
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the called function is required to preserve their values. In other words, a called 

function must preserve these registers’ values for its caller. This set of registers is 

also known as callee save. 

The remaining registers “belong” to the called function. If a calling function wants to 

preserve such a register value across a function call, it must save the value in its local 

stack frame. 

When a function wants to return a value of type integer or address to a memory 

location, this value is placed in the register RAX. 

When a function wants to return a floating-point value, the value is placed in XMM0 

register. 

1.4.3 The Stack Evolution During Function Calls 
The stack is a segment of memory used to store objects with automatic 

lifetime. Typical stack addresses on x86-64 look like 0x7ffd'9f10'4f58—that is, close 

to 247. The Figure 8.a shows a typical memory allocation of the stack region. The 

allocation is done by the kernel of the operating system. 

 

Figure 8.a: Stack allocation in memory 

 

The stack is named after a data structure, which was sort of named after 

pancakes[12]. Stack data structures support at least three operations: push adds a 

new element to the “top” of the stack; pop removes the top element, showing 

whatever was underneath; and top accesses the top element (see section 1.4.1.2). 

Note what’s missing: the data structure does not allow access to elements other 

than the top. (Which is sort of how stacks of pancakes work.) This restriction can 

speed up stack implementations. 

Like a stack data structure, the stack memory segment is only accessed from the top. 

The currently running function accesses its local variables; the function’s caller, 

grand-caller, great-grand-caller, and so forth are dormant until the currently running 

function returns. 

A function stacks look like this: 
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  Figure 8: Multiple stack frames, each per function 

 

The x86-64 %rsp register is a special-purpose register that defines the current “stack 

pointer.” This holds the address of the current top of the stack. On x86-64, as on 

many architectures, stacks grow down: a “push” operation adds space for more 

automatic-lifetime objects by moving the stack pointer left, to a numerically smaller 

address, and a “pop” operation recycles space by moving the stack pointer right, to a 

numerically-larger address. This means that considered numerically, the “top” of the 

stack has a smaller address than the “bottom.” 

 

Operation of instructions like pushq, popq, call, and ret directly impact the stack 

memory. A push instruction pushes a value onto the stack. This both modifies the 

stack pointer (making it smaller) and modifies the stack segment (by moving data 

there). For example, the instruction pushq X (see section 1.4.1.2, for information on 

opcodes) means: 

 

subq $8, %rsp 

movq X, (%rsp) 

And popq X undoes the effect of pushq X. It means: 

movq (%rsp), X 

addq $8, %rsp 

X can be a register or a memory reference. X is a destination operand in the case of a 

pop operation and a source operand in the case of a push operation. 
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The portion of the stack reserved for a function is called: the function’s stack frame. 

Stack frames are aligned: x86-64 requires that each stack frame be a multiple of 16 

bytes, and when a callq instruction begins execution, the %rsp register must be 16-

byte aligned.  

To prepare for a function call, the caller performs the following tasks in its 

entry sequence: 

• The caller stores the first six arguments in the corresponding registers. 

• If the callee takes more than six arguments, or if some of its arguments are 

large, the caller must store the surplus arguments on its stack frame. It stores 

these in increasing order, so that the 7th argument has a smaller address 

than the 8th argument, and so forth. The 7th argument must be stored at 

(%rsp) (that is, the top of the stack) when the caller executes its callq 

instruction. 

• The caller saves any caller-saved registers (see the previous section). 

• The caller executes callq instruction (see the overview on x86-64 machine 

architecture). This has an effect like pushq $NEXT_INSTRUCTION; jmp 

FUNCTION (or, equivalently, subq $8, %rsp; movq $NEXT_INSTRUCTION, 

(%rsp); jmp FUNCTION), where NEXT_INSTRUCTION is the address of the 

instruction immediately following callq. 

This leaves a stack like this: 

 

Figure 9: the stack after the call 

 

To return from a function: 

• The callee places its return value in %rax, if it is of type integer, or in %MMX0 

for a floating-point return value. 

• The callee restores the stack pointer to its value at entry (“entry %rsp”), if 

necessary. 

• The callee executes the retq instruction. This has an effect like popq %rip, 

which removes the return address from the stack and jumps to that address. 

• The caller then cleans up any space it prepared for arguments and restores 

caller-saved registers if necessary. 
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Particularly simple callees don’t need to do much more than return, but most callees 

will perform more tasks, such as allocating space for local variables and calling 

functions themselves. 
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1.4.4 Concrete Example 

 

   Figure 10: Function f calls function g 

Figure 10 shows a simple C program, it defines two functions, f and g, the function f 

calls the functions g, g executes and returns to f, then f will return the same value 

returned by g. 

The function main is the execution starting point of any C program, in this case, it 

calls the function f without arguments, as control passes to the function f, the 

function f calls the function g with the argument a=1. When control goes back to f, f 

returns the return value of the function g. The function g takes one argument and it 

returns the argument incremented by one. 

The program is compiled using gcc which is a compiler driver, it drives the process of 

compilation and linking of the program (see section 1.3). When executed, the 

program returned 2. 
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Figure 11: The main function in assembly representation 

 

Figure 12: Function f in assembly representation 

 

 

Figure 13: Function g in assembly representation 

As figures 11,12 and 13 show, the function main is mapped to address (40112c)hex, f 

to address (401106)hex, and the function g is mapped to address (40111c)hex . 

I used gdb debugger to track the execution of this program, the results are shown 

below, and they seem compliant with the system V ABI definition of the calling 

conventions: 

Before calling a function that accepts arguments, the caller must store the 

argument(s)’s values in the corresponding registers. 

Throughout the documentation, figures are used to facilitate the understanding of 

some details during the execution of a C program in a computer system. Those 

figures are sometimes put in the chronological order of the instructions being 

executed. 

The figures reduce the computer system as a memory holding code and data for a C 

program, connected to the MMU, the memory management unit, a hardware 

component discussed in section 2.2.3.1, a CPU, and a set of registers. 
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When a CPU cycle starts, the address contained in the RIP register is translated to a 

physical address, this is called an instruction fetch. Fetching an instruction requires a 

memory read operation, the instruction saved at the physical address provided by 

the MMU will be copied to a register illustrated as IR (instruction register). 

Whenever an instruction is fetched the RIP register is incremented by the size of the 

instruction in bytes, pointing to the next instruction. 

The second phase of the cycle of the CPU is decoding, the CPU will decode the 

instruction, and changes its state before executing it. This phase also requires 

fetching the operands of the instruction being decoded from memory or registers. 

The decoding phase is followed by the execution of the operation addressed by the 

instruction, and potentially by the saving of any value back to a memory location or a 

register.  

After checking for interrupts the CPU will start the cycle again by fetching the next 

instruction. Interrupts are out of the scope of this project. They can be imagined like 

events that stop the execution of the program permanently or for a period of time. 

The figures also show, where the RSP and RBP registers are pointing to, and what 

instruction is executed.  

 

Figure 14 illustrates the argument passing mechanism, before the function f calls the 

function g, it must prepare arguments for it, in this case only one argument of value 

one gets passed within the register RDI. 

 

Figure 14: Passing one argument 
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Call <40111c> at address (401114)hex is instructing the CPU to copy the address 

(40111c)hex, the address of the next instruction in the block of the function f, to the 

top of the stack (e.g. to the memory location pointed to by RSP register). 

Figure 15: The call instruction 

Then, the operand of the call instruction was copied to the RIP register, this will pass 

control to the function g at the next cycle of the CPU (see Figure 15). 

The first two instructions in each function are identical, this is called a function 

prologue, a function prologue sets the stage for a new activation record, and it 

manipulates the value of RBP register to indicate a new stack frame. 

push rbp instruction (e.g., the first instruction of the function prologue) moves the 

value of rbp register which holds the base of the stack of the caller (e.g., the address 

at which the activation record of the caller starts) to the stack, this is a callee save as 

defined in the previous section about System V ABI. 

Push rbp instruction at address (40111c)hex at the block of the function g means 

decrement rsp register by 8, the size of the content of RBP in bytes, and copy the 

value in rbp register at the location pointed to by rsp. So, the value of rbp will be 

stored at the next word after the return address towards lower addresses on the 

stack (see Figure 16). 

The second instruction in the function prologue, mov rbp,rsp, is instructing the 

processor to copy the value in rsp register to the rbp register. This means that the 

callee (e.g., the called function) is setting a new activation record on the stack, so 
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when it calculates addresses for its local variables, the called function uses the new 

rbp as a base register.  

 

Figure 16: RBP register saved by the callee 

The second instruction in each function’s prologue is manipulating the value of RBP, 

making this register point to the memory location where the saved RBP is stored 

(see Figure 17). 

This new value of RBP will be used by the callee (i.e., the function g) whenever it 

calculates an address of its local variables. This register indicates the stack frame of 

each function. 
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Figure 17: Indicating a new stack frame 

When g finishes its calculation, two instructions (the instructions at addresses 

40112a and 40112b), forming what is known as a function epilogue, would be 

executed.  

The function g must return a value, before passing control back to f. In this case, only 

one integer return-value is passed using rax register (see Figure 18). 
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Figure 18: Passing integer return value 

 

When the rip reaches the pop %rbp instruction inside the block of function g, rsp at 

this point is referring to the location where the base of the stack used by f is saved. 

The instruction pop %rbp, when executed, will restore the value of rbp as it was 

before the call to g (see Figure 19.) 

After the pop instruction is executed rsp is incremented by the number of bytes an 

x86-64 address takes (e.g., 8 bytes). 

This pattern of saving the address of the next instruction after the call instruction 

and saving the value of rbp register at the address referred by rsp, in this order, is 

repeated also when main calls f. 
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Figure 19: restoring the value of RBP 

 

The second instruction in a function epilogue is the ret instruction. This instruction 

causes the CPU to pop the return address (i.e., the saved value of RIP register) from 

the stack into the RIP register, thereby transferring control back to the caller 

function. Upon execution, the stack pointer (RSP) is incremented to remove the 

return address from the stack, effectively cleaning up the stack frame of the called 

function (see Figure 20). 

Figure 21, shows how the stack is left after returning to the caller. 
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Figure 20: The ret instruction 

 

 

Figure 21: The end of the call sequence 



32            Reducing the level of abstraction 
 

 

1.5 Conclusion 
Our inspections on the intervention of the stack memory in function calls show 

that two kinds of data are stored there. The saved instruction pointer (saved RIP) 

and normal data such as local variables are mixed together. Critical control flow data 

presence along with user defined data is putting the control flow of the program into 

risk, if the user defined data isn’t handled carefully. This design is the cause of stack-

based buffer overflow, and it will be clearer how this design leads to exploitable bug 

in the following sections where we focus on the bug on more details.  
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Chapter 2  Functions Lacking Bounds Checking 

2.1 Introduction 
In computer programming, bounds checking [13] is any method of detecting 

whether a variable is within some bounds before it is used. It is usually used to 

ensure that a number fits into a given type (range checking), or that a variable being 

used as an array index is within the bounds of the array (index checking). A failed 

bounds check usually results in the generation of some sort of exception signal. 

As performing bounds checking during each use can be time-consuming, it is not 

always done. Bounds-checking elimination is a compiler optimization technique that 

eliminates unneeded bounds checking. 

This chapter addresses the critical issue of bounds checking in C programming. 

We explore the risks posed by buffer overflows due to the language's lack of built-in 

protections, including common vulnerabilities like those found in functions such as 

strcpy(). We'll examine how lack of bounds checking is exploited by attackers, exiting 

mitigation techniques, and a proposed solution by statically substituting this function 

with its relative strncpy() without the need for the source code.  

A contiguous set of memory locations is known as a buffer. When a function wants 

to deal with such a buffer, a pointer to that memory location is passed as an 

argument to that function. A lot of commonly used functions, provided by the C 

standard library, don’t implement a way to check the size of the buffers passed as 

arguments. Thus, if there is a way to control the size of the buffer other regions in 

memory, not reserved for the argument, would be corrupted, leading to a potential 

binary exploitation.  

 

 

 

 

2.2 GNU C Library 
The vulnerable function provided as an example in this work is strcpy() is part 

of the C standard library. The GNU C library [14] is a specific implementation of the C 

standard library. Commonly abbreviated as glibc, is a fundamental component of 

most Unix-like operating systems. It is a core part of the GNU project and serves as 

the standard C library for these systems. Developed by the Free Software Foundation 

(FSF), glibc provides essential functionality to programs written in the C 

programming language, including input/output operations, memory allocation, and 

system calls. 

At its core, glibc is designed to be highly portable, supporting a wide range of 

hardware architectures and operating system kernels. This portability allows 

software developers to write code that can run on various Unix-like systems without 
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modification. One of the key features of glibc is its adherence to various standards, 

particularly the ISO C and POSIX standards. By conforming to these standards, glibc 

ensures that programs written against its APIs behave predictably across different 

platforms. This adherence also facilitates interoperability between different software 

components and systems. In addition to standard C library functions, glibc includes 

extensions and optimizations to improve performance and functionality. These 

extensions cover areas such as internationalization, threading, and networking, 

enhancing the capabilities of applications running on Unix-like systems. 

Overall, glibc plays a crucial role in the functioning of Unix-like operating systems, 

providing a robust and standardized foundation for software development and 

system operations. Its portability, standards compliance, and ongoing development 

make it an indispensable component of the open-source ecosystem. 

2.3 Unsafe Functions: an Example of strcpy() 
Glibc, like many software libraries, includes functions that lack bounds 

checking, which can lead to vulnerabilities if not used carefully. To name a few, the 

following list (Table 22) includes some popular glibc functions known to lack bounds 

checking: 

strcpy : Copies a null-terminated string from the source to the destination 

buffer without performing bounds checking. 

strcat : Appends the source null-terminated string to the end of the 

destination null-terminated string, also without bounds checking. 

gets : Reads a line from standard input into a buffer until a newline or EOF 

is encountered, but lacks bounds checking and is considered unsafe. 

sprint : Formats and stores a series of characters and values into a buffer, 

similar to printf. 

scanf : Reads formatted input from standard input, parsing it according to 

the provided format string. 

realpath : Resolves a relative path to an absolute path and stores it in a 

buffer, which must be sufficiently large. 

memcpy : Copies a specified number of bytes from a source memory 

location to a destination. 

strtok : Tokenizes a string, splitting it into substrings based on specified 

delimiter characters, modifying the original string in the process. 

Table 22: Popular vulnerable functions 

Certain functions behave in dangerous ways regardless of how they are used. 

Functions in this category were often implemented without taking security concerns 

into account. The strcpy() function, used as an example in this work, is unsafe 
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because it does not perform bounds checking on its arguments. When used 

uncarefully, it can lead to out-of-bounds memory writing, corrupting memory 

locations that aren’t concerned by the function of strcpy. 

strcpy() is used to copy, byte by byte, a string of characters pointed to by its second 

argument, to a buffer pointed to by the function’s first argument until a null 

terminator is encountered. However, it does not perform any bounds checking, 

meaning it will continue copying characters from the source string until it reaches a 

null terminator, potentially overflowing the destination buffer if it is not large 

enough to hold the entire string. This can result in buffer overflow vulnerabilities, a 

common security issue where an attacker can exploit the lack of bounds checking to 

overwrite adjacent memory locations with malicious code or data. 

 

For example, consider the following code snippet: 

 

char dest[10]; 

char source[] = "This is a long string"; 

strcpy(dest, source); 

In this case, strcpy() will attempt to copy the entire contents of the source 

array (including the null terminator) into the dest array, which only has space for 10 

characters. As a result, it will overflow the dest buffer, leading to undefined behavior 

and potentially exploitable security vulnerabilities. 

To mitigate the risk of buffer overflow vulnerabilities, developers should use safer 

alternatives that perform bounds checking, such as strncpy(). strncpy function allows 

developers to specify the maximum number of characters to copy, preventing buffer 

overflows if the source string is longer than the specified number. 

2.3.1 The Bug in Detail 
A buffer is a contiguous region of memory, it is a set of adjacent memory 

locations. An example of a buffer is an array of any type. The buffer is identified by 

the memory address of its first element.  

In our explained example, the buffer is a null-terminated string of characters. It can 

be the first argument of the strcpy function (the destination buffer), as it can be the 

source buffer (the second argument of the function). 

Generally, the problem occurs when a programmer uses a function that 

copies a chunk of memory from one buffer to another without taking the size of 

each buffer into account. For reasons of simplicity, this work takes the example of 

strcpy().  The function takes two arguments, the first argument (the destination 

argument) is a pointer to the destination buffer, on which the string will be copied, 
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and the second argument (the source argument) is an address pointing to where the 

string is stored in memory.  

In some cases, the programmer is giving the user of the program the ability to store 

a string of an arbitrary size in the buffer pointed to by the source argument. In this 

case, if the destination buffer can’t support the user’s chosen size (e.g., the size of 

the destination buffer is smaller than the size of the source buffer), the function 

using (i.e., calling) strcpy() will have a corrupted stack frame. Especially, memory 

locations adjacent to the destination buffer will be corrupted. 

As we explored in the previous chapter, data that contributes to the flow of 

control of a program is stored on the stack, this is the saved return address. The 

saved return address is pushed on the stack after a function executes a call 

instruction to another function, so, when the called function finishes its computation 

and executes the RET instruction, the execution will continue at the block of the 

caller, in the instruction following the call instruction. This data is targeted by 

attackers by exploiting stack overflow vulnerability. It is corrupted to manipulate the 

flow of the program that uses strcpy function or any similar function in terms of the 

discussed vulnerability. 

When the saved return address gets corrupted, whenever a ret instruction is 

executed in the function that uses strcpy, control flow will be passed to the 

instruction pointed to by the corrupted data. 
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Figure 22: A program using strcpy 

 

At compile-time, as Figure 22 shows, the compiler will reserve space for the 

destination buffer as dictated by the developer. 

The uncareful use of strcpy, will overflow the destination buffer, leaving the stack 

somehow like what is shown in Figure 23. 
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Figure 23: Corrupted caller’s stack frame 

 

2.3.1.1 strcpy function 
From the Linux man page of this function, we see the description below 

(figure 24):  

The strcpy() function copies the string pointed to by src, including the terminating 

null byte ('\0'), to the buffer pointed to by dest. The strings may not overlap, and the 

destination string dest must be large enough to receive the copy. Beware of buffer 

overruns! (See BUGS.) 

The strncpy() function is similar, except that at most n bytes of src are copied. 

Warning: If there is no null byte among the first n bytes of src, the string placed in 

dest will not be null-terminated. 

If the length of src is less than n, strncpy() writes additional null bytes to dest to 

ensure that a total of n bytes are written. 
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A simple implementation of strncpy() might be: 

char * 

strncpy(char *dest, const char *src, size_t n) 

{ 

    size_t i; 

 

   for (i = 0; i < n && src[i] != '\0'; i++) 

        dest[i] = src[i]; 

    for ( ; i < n; i++) 

        dest[i] = '\0'; 

 

   return dest; 

} 

 

This function replaces strcpy() and it checks the bounds of the source buffer. This 

function will be used in section 2.3.1 where a mitigation by substitution is proposed. 

Return Value 

The strcpy() and strncpy() functions return a pointer to the destination string dest. 

Bug 

If the destination string of a strcpy() is not large enough, then anything might 

happen. Overflowing fixed-length string buffers is a favorite cracker technique for 

taking complete control of the machine. Any time a program reads or copies data 

into a buffer, the program first needs to check that there's enough space. This may 

be unnecessary if you can show that overflow is impossible, but be careful: programs 

can get changed over time, in ways that may make the impossible possible. 

Figure 24: Linux man page of strcpy 

 

Consider the source code of a program using the flawed strcpy function (Figure 25). 

The developer of this program neglected the situation where the user can provide a 

string of more than 15 characters. 

#include <stdio.h> 

#include <string.h> 
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void printName(char* buffer) { 

char name[16]; 

strcpy(name, buffer); 

printf("Hello %s\n", name); 

} 

int main(int argc, char* argv[]) { 

if(argc > 1) printName(argv[1]); 

return 0; 

} 

Figure 25: A program invoking strcpy 

 

Executing the program with a legitimate input gave an expected behavior as in 

Figure 26. 

 

Figure 26: Normal execution 

 

Executing the program with an argument of more than 16 characters stops the 

program (see figure 27). 

 

Figure 27: An execution with unintended input 

 

The program was stopped because the saved return address was corrupted by the 

ASCII value of the character ‘e’. 

During the execution of the program, at the point before the program was stopped. 

The inspection of the stack using gdb [15] debugger is shown in Figure 28. 



41            Functions Lacking Bounds Checking 
 

 

Figure 28: Debugger view of the program 

 

We stopped the execution of the program before the ret instruction in the block of 

the printName function was executed for debugging purposes. At this point of 

execution, the rsp register was pointing to the saved return address. Inspecting what 

value is stored at the location pointed to by rsp, shows some instances of the letter 

‘e’. This means that upon the execution of the ret instruction in the block of 

printName, control will be passed to a corrupted return address, in this case, the 

address: 0x6565656565656565 (see Figure 29). 

 

Figure 29: The corrupted return address 

However, Figure 30 shows that the program was stopped by the operating system 

due to a mitigation discussed in section 2.2.3. 

 

Figure 30: Segmentation Fault exception 
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2.3.2 Exploit: Arbitrary Code Execution 
Stack buffer overflow bug can be exploited to corrupt program’s data. Data 

corruption can impact the control flow of a program, if this data is used to do so. 

In worst cases, the bug is exploited by attackers causing the vulnerable 

program to execute arbitrary, attacker-chosen code. 

Arbitrary code execution exploitation works by putting a well-crafted sequence of 

characters in the unprotected source buffer on which the attacker is having control. 

This sequence of characters is divided to two parts, the first part is the code in 

machine language that the attacker wants to execute. The second part is a memory 

address pointing to the first byte of the first part. The address must coincide, in 

position, with the saved return address on the stack (see figure 31). 

The favorite code in an attacker point of view is one which spawns a shell, a 

command interpreter program.  

 

Figure 31: Inner workings of shellcode exploit 

 

The shellcode must meet some constraints. It must avoid null bytes, as these are 

interpreted as string terminators and would truncate the shellcode when copied by 

functions like strcpy. 
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The size of the shellcode must be compact enough to fit into the buffer being 

overflowed. Also, Certain characters may need to be avoided depending on the 

context (e.g., newline characters, spaces, and others that could affect the copying 

process or execution flow). 

2.3.3 Mitigation: access restriction to the stack 

2.3.3.1 The memory management unit 
This exploit is mitigated by designers using a special hardware component: 

MMU[16]. The Memory Management Unit is a hardware component lays between 

the CPU and the memory controller. It pertains to the CPU and it stores a data 

structure called page tables used to resolve virtual addresses to physical addresses. 

The MMU implements the concept of virtual memory, which allows a computer to 

appear to have more memory than it physically possesses. Each program running on 

the system operates within its own virtual address space, which is divided into fixed-

size units called pages. When a program accesses memory, it uses virtual addresses. 

The MMU translates these virtual addresses into physical addresses, which 

correspond to specific locations in physical memory (RAM). This translation is 

performed using hardware-based memory management techniques. Each entry in 

the page table corresponds to a page of memory, containing the physical address 

where that page is stored. 

If a program accesses a virtual address that is not currently mapped to a 

physical address, a page fault occurs. The MMU intercepts this fault and triggers a 

process called page fault handling. The operating system then determines the 

appropriate action, such as loading the required page from secondary storage (e.g., 

disk) into physical memory. 

The MMU enforces memory protection by assigning access permissions to each page 

of memory. These permissions specify whether a page can be read from, written to, 

or executed. If a program attempts to access memory in violation of these 

permissions, the MMU raises an exception, typically resulting in a segmentation fault 

or similar error. 

The mitigation is called NX (No-eXecute), it consists of restricting the stack to be 

accessed for code execution. Page tables are extended to specify the access rights 

for each region in memory. The stack region is accessed only for a read or a write 

operation. The NX bit works by marking memory pages with specific permissions that 

define whether code execution is allowed on those pages. In particular: 

• Data Pages: Pages designated to store data (such as those used for the stack 

or heap) are marked as non-executable. 

• Code Pages: Pages designated to store executable code (such as those 

containing the program's instructions) are marked as executable. 

When the CPU encounters an instruction that attempts to execute code from a non-

executable page, it triggers a hardware exception, preventing the execution of the 
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injected code. This mechanism effectively stops many common exploitation 

techniques, as it enforces a clear separation between executable code and data. 

By implementing the NX bit, modern processors and operating systems can provide 

an additional layer of security, ensuring that only intended and authorized code is 

executed, thereby significantly mitigating the risk of arbitrary code execution 

through exploits like stack-based buffer overflows. 

2.3.3.2 Stack with read and write access permissions 
Designers thought that memory segments (set of pages) of the process which 

contain code must be marked as executable and read-only. On the other hand, those 

areas containing data are marked as read/write and non-executable. Processors 

must provide hardware support to check for this policy when fetching instructions 

from main memory. Even if an attacker successfully injects code into a writeable (not 

executable) memory region, any attempt to execute this code would lead to a 

process crash. This technique is also known as “W∧X” because a memory page can 

be marked as executable or writable, but not both at the same time. Though this 

mechanism is implemented on the MMU, the operating system support is required: 

At the startup time of a process, the operating system and the runtime loader use 

mmap extensively to set up the process's memory layout. This includes mapping the 

executable code, shared libraries, the stack, the heap, and other necessary regions 

into the process's address space. The usage of mmap at this stage is crucial for 

enforcing memory protections and supporting NX (No-eXecute) mitigation. 

mmap is a system call, wrapped by a C function called also mmap[18]. In a typical 

unix-like system, mmap function is used by the loader at the startup time to allocate 

memory for the stack, it is invoked as follow: 

mmap(stack_addr, stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | 

MAP_ANONYMOUS, -1, 0); 

The flags PROT_READ and PROT_WRITE specify the access permissions to the stack 

as read and write, this will configure the data structure stored in the MMU. 

The Figure 32 highlights the allocation of the stack by tracing the use of system calls 

at the execution of a typical C program. 

 

Figure 32: Stack allocation using mmap 
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By visualizing the memory layout of a running process, we can also confirm the 

presence of this mitigation on modern systems (see Figure 33). The stack is mapped 

as readable and writable only. 

 

Figure 33: The memory layout of a running process 

 

2.3.4 Evasion: Code Reuse Attack 
The Non-eXecutable bit (NX)/Data Execution Prevention (DEP) mechanism 

can be bypassed using attacks that do not require to execute an injected code, but 

reuse the already existing and mapped code on the target application. 

Code Reuse Attacks work by corrupting the return address on the stack to repurpose 

existing components that are mapped in the MMU as executable. In particular, they 

repurpose existing code to perform arbitrary computations (see Figure 34). 
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Figure 34: Code reuse attack 

 There is a family of techniques referred to as ret2* and more generally the Return 

Oriented Programming (ROP) technique. ROP is a very effective technique to bypass 

the NX mitigation. It is realistic to assume that modern attacks do not inject code but 

use the ROP method. Therefore, from now on we will assume that the NX bit 

protection is bypassed directly, and then the security relies on the effectiveness of 

the remaining security measures. 

 

2.3.5 Mitigation: Stack Canaries 
This section shows an additional mitigation that is done after programmers 

generate their source code, during compilation time. In the event that source code is 

absent, a method for achieving stronger protection is given in the next section. Stack 

Canaries are quite basic; we start the function with a random value added to the 

stack. The original random value is compared to the current value before the 

program performs ret; if they match, there hasn't been a buffer overflow. If they 

aren't, the software fails, frequently accompanied by a warning message stating that 

"stack smashing detected." The attacker then tries to overflow to take control of the 

saved return address. 

There have been three different canary types proposed [17], each with advantages 

and disadvantages: 
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• Random: the canary is a random number, unknown to the attacker;  

• Terminator: the canary contains characters that stop most string functions 

(newline, null byte, linefeed, −1);  

• XOR: the canary is the XOR of a random value and the saved return address. 

2.3.5.1 Concept and Limitations  
If the attacker is unable to guess them, random canaries are a good idea. Sadly, 

memory leak issues have the ability to expose the value of the canary, making it 

completely worthless. Conversely, terminator canaries are constant values that the 

attacker already knows and can't modify. They utilize numerous strategies to thwart 

the attacks. Take a strcpy()-based overflow, for instance. Because strcpy() won't copy 

all the bytes that follow a terminator character, we know that the attacker's payload 

cannot contain a newline character. However, it will be discovered if the attacker 

replaces the newline in the canary with something different. Sadly there are flaws 

with memcpy(), read(), and even custom hand-written code because they do not 

depend on any special character. 

Using a Random Canary or a Terminator Canary isn’t efficient when the program has 

also vulnerabilities that allow for arbitrary memory write or arbitrary memory read. 

If an attacker can expose the random value of the Canary using a vulnerability like 

format string, he would easily corrupt the saved return address. Vulnerabilities that 

facilitate arbitrary memory write will allow the attacker to corrupt the saved return 

address without the need of exploiting a stack-based buffer overflow. 

By combining the random canary with the initial stored rip address in a XOR 

operation, the XOR canaries try to thwart these kinds of attacks, except when the 

program presents a memory leak vulnerability, both the XORed value and the 

content of RIP can be exposed to the attacker. In real world, this mitigation is 

implemented using a combination of the XOR Canary, the Random Canary and the 

Terminator Canary, but another kind of disadvantages reveals. Consider a canary 

formed by a random value and a terminator character, it is clear it will have a 

reduced entropy compared to a completely random canary as the size of random 

bytes reduces also which leads to an easy to guess Canary value.  

To visualize the role of canaries (XORed, Terminator and Random) in the protection 

of the saved return address, Figure 35 shows the memory layout of a program using 

one of this mechanism before the stack get corrupted, and Figure 36 highlights how 

the corruption is detected. 
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Figure 35: Stack frame before the corruption 
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Figure 36: Detected memory corruption 

 

The program invoking strcpy didn’t handle the case of out-of-bounds memory 

writing, so the attacker-controlled source buffer was successfully copied into the 

destination buffer, corrupting the Random (XORed or Terminator) value adjacent to 

the destination buffer of the strcpy function. The Canary mitigation, as the 

subsequent sections show, includes in the mitigated program a way to check for the 

integrity of the canary value before returning to the caller. In this case, the function 

invoking strcpy will detect the corruption of the Canary upon returning to its caller, 

and the program immediately stops.  

 

2.3.5.2 Implementation of stack canaries in GNU/Linux systems  
Linux systems that use the GNU C library and gcc (i.e., most of the Linux 

systems) implement stack canaries as a collaboration between the kernel, the 

compiler and the C library. The workflow is as follows [17]:  

1. During each execve(), the kernel places a random value in the stack of the new 

allocated virtual memory; 
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 2. The C runtime initialization functions that come with the GNU libc use this value 

to compute the canary and place it in a well-known location in the process’s 

memory;  

3. the function prologue generated by gcc takes this global canary and pushes it on 

the stack; the function epilogue checks if the local canary matches the global one, 

and aborts the process if they differ. We can already make some considerations. 

The execve is a system call used to load a binary and execute the program it holds; it 

comes always after the fork system call to replace the child process with a new 

program. As the Canary value changes only after an execve, it is always the same for 

the entire lifetime of a process.  

There is a new canary only when execve() is called: a fork()ed process will use the 

same canary as its parent.  

This implementation also presents some limitations, basically, the Canary exists in 

many places in memory. A global copy of the Canary is present in a data-structure 

dedicated for the whole program after an execve of that program, and at any 

moment a function call is introduced, the called function will copy the Canary from 

the global data-structure to its stack frame. Due to the nature of working of the stack 

as discovered in chapter 1, no data is really deleted when a stack frame is released, 

thus, an attacker can read the value of the Canary from parts on the stack different 

from the frame of the flawed function (i.e., the function using a routine lacking of 

bounds checking). However, the mitigation still provides a degree of protection, as 

the attacker has to exploit more than one bug in order to bypass it. 

2.3.5.3 The kernel  
When the user puts the pathname of a program in the shell, the shell will 

execute an execve system call specifying the invoked program, and its environment 

variables. Upon the loading of the program, the Kernel will put a 16 bytes Random 

value (generated using a pseudorandom number generator) just above the 

environment string [17], and uses an auxiliary vector to indicate the address of those 

Random bytes [17.a]  

Auxiliary vectors are vector structures that take up two stack lines each, they 

provide kernel level information to user-processes. The first line contains a numeric 

"tag" that identifies the type of information contained into the second line; the 

AT_RANDOM tag (value 25, hex 19) is the one we are interested in; the second line 

of the entry with this tag contains the pointer to the random bytes. The kernel 

pushes this data structure onto the process stack, immediately below the 

environment array. This data structure contains various information about the 

process and the program and is primarily used by the dynamic loader. The following 

is an example of such auxiliary vector [17.b]: 

   AT_SYSINFO_EHDR: 0x7fff35d0d000 

    AT_HWCAP:        bfebfbff 
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    AT_PAGESZ:       4096 

    AT_CLKTCK:       100 

    AT_PHDR:         0x400040 

    AT_PHENT:        56 

    AT_PHNUM:        9 

    AT_BASE:         0x0 

    AT_FLAGS:        0x0 

    AT_ENTRY:        0x40164c 

    AT_UID:          1000 

    AT_EUID:         1000 

    AT_GID:          1000 

    AT_EGID:         1000 

    AT_SECURE:       0 

    AT_RANDOM:       0x7fff35c2a209 

    AT_EXECFN:       /usr/bin/sleep 

    AT_PLATFORM:     x86_64 

2.3.5.4 The GNU C library  
The GNU C library [14] contains some object files that are linked with all 

programs by default. The shared objects implement many frequently used routines 

such as initialization routines which execute at the startup-time of a process, and 

clean-up routines that execute at the end of any process before it exits. The _start 

One of the startup routines is called _start, it is the first executed routine in the 

lifetime of a process, it implements a small assembly program that calls 

_libc_start_main(), function implemented in C language in the standard C library. 

The role of this function is to perform some initializations and passes control to the 

original program's main function. When a program is compiled to have the stack 

canary mitigation, those initialization routines shall copy the least significant bytes 

from the kernel-provided random bytes to form the canary value. It depends on the 

underlying platform; 4 bytes will be copied in case of 32bit architecture and 8 bytes 

otherwise [17]. The copied parts shall be merged with a terminator character, by 

replacing the least significant byte by a null character, to end up by a Canary that 

combines Random bytes and a Terminator byte. This will lead to an easy to guess 

Canary in the case of 32bit architecture, as the Canary contains only 3 Random 

bytes. 

 Upon the program loading, the kernel puts the 16 random bytes at a Tread-

Local Storage, a per thread data-structure called Thread Control Block. This data-

structure can be corrupted if there in the occurrence of a buffer overflow attack 
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when the buffer is adjacent to the TCB location, adding a new risk to the canary [17]. 

Basically, initialization routines put the address of this data structure into fs register 

(segment selector register) upon the constitution of the Canary value. So, whenever 

the global Canary value is needed its address will be calculated using this register. 

2.3.5.5  The gcc compiler  
The gcc compiler will add canary support to the compiled program if the 

stack-protector option is enabled. In current Linux distributions, this is enabled by 

default and can be disabled by adding the -fno-stack-protector option to the gcc 

command line. 

The following options come from GCC4.9.3 Manual: 

-fstack-protector 

Emit extra code to check for buffer overflows, such as stack smashing attacks. This is 

done by adding a guard variable to functions with vulnerable objects. This includes 

functions that call alloca, and functions with buffers larger than 8 bytes. The guards 

are initialized when a function is entered and then checked when the function exits. 

If a guard check fails, an error message is printed and the program exits. 

 

-fstack-protector-all 

Like -fstack-protector except that all functions are protected. 

 

-fstack-protector-strong 

Like -fstack-protector but includes additional functions to be protected — those that 

have local array definitions, or have references to local frame addresses. 

When canaries are enabled, the prologue of canary-protected functions becomes: 

 

Lines 1–7 contain a standard prologue, except for the need to reserve space for the 

canary in addition to the local variables. Lines 9 and 10 are new: line 9 reads the 

global canary from offset 0x28 in the TCB and line 10 copies the canary just above 

the saved frame pointer. Note that, if the compiler has to save other registers 
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besides the old frame pointer (see the comment at line 3), the canary will be stored 

above them. The canary protected epilogue is: 

 

Lines 1–7 are new, while the others are nothing more than the standard epilogue. 

The new instructions add a bit of overhead to the function, so gcc only adds them 

where it thinks they are really needed. Basically, only in functions that declare 

sufficiently large array variables 2 The __stack_chk_fail function prints an error 

message on standard error and aborts the process. For the time being, ignore the 

strange @plt suffix in the function name: It is a reference to the linker-generated 

Procedure Linkage Table (PLT). 

 

2.4 Alternative Functions: an Example of strncpy() 
There is an equivalent to the function strcpy() which do consider the size of the 

destination buffer when copying strings in the stack. 

The strncpy() function is similar to strcpy() function, except that at most n bytes of 

the source (src) buffer are copied. If there is no NULL character among the first n 

character of the source buffer, the string placed in the destination buffer (dest) will 

not be NULL-terminated. If the length of src is less than n, strncpy() writes an 

additional NULL characters to dest to ensure that a total of n characters are written. 

Syntax: 

char *strncpy( char *dest, const char *src, size_t n ) 

  src: The string which will be copied. 

  dest: Pointer to the destination array where the content is to be copied. 

  n: The first n character copied from src to dest. 

The next part describes an implementation of a solution to statically replace the 

strcpy() function with strncpy() in the executable file without needing the source 

code, even if the executable is stripped (i.e., a symbol-free binary). 
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Patching a stripped binary will require that the vulnerable function is dynamically 

linked to the program, this is because symbols of statically linked objects can’t 

persist after running a strip command against the binary. 

2.4.1 A proposed solution: Substituting the Flawed Function 

2.4.1.1 Problem and solution 
Though it has some limitations, stack canary mitigation is considered as a 

robust defense against stack’s buffer overflow bugs. This mitigation requires that the 

source code of the vulnerable program is in our hand, which is not always the case. 

The bug can be detected in proprietary applications, old libraries or out-of-the-shelf 

software when no source code is available.  

We proposed a solution based on a binary rewriting approach. Static binary 

rewriting has many important applications in software security and systems such as 

hardening, repair, patching, instrumentation, and debugging. While many different 

static binary rewriting tools have been proposed, most rely on recovering control 

flow information from the input binary. Control flow refers to the order in which the 

instructions of a program are executed. It determines how a program moves from 

one statement to another, based on specific conditions and decisions. 

The recovery step is necessary since the rewriting process may move instructions, 

meaning that the set of jump targets in the rewritten binary (e.g., the content of 

memory locations pointed to by the operands of control-flow instructions) needs to 

be adjusted accordingly. 

Since the static recovery of control flow information is a hard problem because of 
the necessity of the manual efforts it needs, most tools rely on a set of simplifying 
heuristics or assumptions, such as specific compilers, specific source languages, or 
binary file meta information. 
However, the reliance on assumptions or heuristics tends to scale poorly in practice, 
and most state-of-the-art static binary rewriting tools cannot handle very large/com-
plex programs such as web browsers.  
 
In this work we use E9Patch, a tool that can statically rewrite x86_64 binaries with-
out any knowledge of control flow information [19]. e9patch is control-flow agnostic 
and it doesn’t depend on any heuristics. We will use this tool as a framework to im-
plement our solution to stack buffer overflow vulnerability, caused by the use of 
functions that lack bounds checking; And applying the solution to replace strcpy() 
function with strncpy() function in stripped binaries to give a concrete use-case. To 
do so, E9Patch develops a suite of binary rewriting methodologies—such as instruc-
tion punning, padding, and eviction—that can insert jumps to trampolines without 
the need to move other instructions [19]. Since our approach preserves the set of 
jump targets, the need for control flow recovery and related heuristics is eliminated. 

As such, E9Patch is robust by design, and can scale to very large (>100MB) stripped 

binaries including the Google Chrome and FireFox web browsers. 
E9Patch operates at a low level, directly manipulating instructions within a binary 

file. Its patching process involves several steps. The process can be automated, 
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either by using its default front-end (e9tool) or by developing a custom frontend. 

First, e9patch takes an unpatched binary as input, along with disassembly 

information detailing instruction locations and sizes, as well as the specific patch 

locations. Additionally, it utilizes trampoline templates, which are code snippets 

containing the desired functionality to be inserted. 

The patching process begins with the selection of patching tactics, where E9Patch 

attempts a sequence of strategies (Baseline B1, B2, T1, T2, T3) for each patch 

location. These tactics prioritize efficiency and coverage. Baseline tactics (B1 and B2) 

involve directly replacing instructions with jumps to trampolines (B1 tactic), or using 

punned jumps to conserve space (B2 tactic). If these tactics fail, E9Patch employs 

more advanced techniques like padded jumps, successor eviction, or neighbor 

eviction to ensure successful patching.  

For the x86_64, B1 tactic is implemented using the relative near jump (jmpq rel32) 

instruction. Here rel32 is a 32bit signed integer that is added to the program counter 

(%rip) in order to orient the jump. The relative near jump instruction is five bytes 

long, including one byte for the opcode (0xe9) and four bytes for the rel32 value. A 

patch location instruction that is greater-than-or-equal-to five bytes can be directly 

replaced, but complications arise when the patch location instruction is smaller than 

five bytes. To deal with patch location’s size limit B2,T1,T2 and T3 tactics are 

conceived. Those extra tactics are out of the scope of our work, since our patch 

locations are call instructions to the strcpy() or any other flawed function. 

ELF rewriting is a key aspect of E9Patch's functionality. It patches instructions in 

place, replacing targeted instructions with jumps to corresponding trampolines, and 

appends new data such as trampoline and instrumentation code to the end of the 

binary. Additionally, it integrates a loader at the entry point to map trampoline 

pages into the virtual address space during program loading. 

The output of E9Patch is a rewritten binary, where the desired patches have been 

applied. This modified binary serves as a drop-in replacement for the original, 

requiring no additional dependencies or configuration. Essentially, E9Patch skillfully 

manipulates instructions and memory layout to achieve efficient and scalable binary 

rewriting without the complexities of control flow analysis. 

Since our patch will target call instructions to the strcpy(), our patch location takes 5 

bytes in memory (i.e., the size of a call instruction) which is large enough to hold a 

jump instruction, so replacing the call to strcpy with a jump instruction that address 

a safe version of strcpy() (e.g., strncpy()) is possible using B1 tactic. 

B1 tactic replaces each patch location instruction with a jump instruction that 

redirects control flow to a trampoline that implements the patch. In our case, a 

trampoline means a snippet of code that: 

1. Save any necessary registers 

2. Prepare the arguments for the safer version of the flawed function 

3. Call the function that replaces the flawed function 
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Consider the following instruction which is a call to the dynamically linked strcpy() 

function: 

 

BINARY REPRESENTATION    ASSEMBLY REPRESENTATION 

e8 db fe ff ff             call   401030 <strcpy@plt> 

To substitute strcpy() function with its safer version statically in the binary of the  

vulnerable application, we need simply to substitute this instruction with a jump 

instruction to the trampoline which calls strncpy(). This requires the existence of the 

code that implements the new function (e.g., the patch) at runtime, either statically 

linked or dynamically linked with the patched binary (e.g., the output of the tool). So, 

when inspecting the same location in the patched binary we would find something 

like this: 

BINARY REPRESENTATION    ASSEMBLY REPRESENTATION 

e9 ab 3e 00 00               jmp    405000 <__TMC_END__+0xfd0> 

A jump instruction to a trampoline that is already hardcoded by the tool in the 

binary. 

2.4.1.2 E9 tool 
E9Tool is the default frontend for E9Patch [21]. E9Tool translates high-level 

patching commands (i.e., what instructions to patch, and how to patch them) to low-

level commands for E9Patch. The basic usage of E9Tool is as follows: 

$ e9tool -M MATCH -P PATCH binary, Where:  

• binary is the binary to patch (executable or shared object)  

• -M MATCH specifies which instructions in binary to patch 

• -P PATCH specifies how matching instructions should be patched  

After rewriting, the patched binary will be written to a.out (for executables) or a.so 

(for shared objects) by default. For example, the following command will instrument 

all jump instructions in the xterm binary. Whenever the jump instruction is executed 

a message, indicating the execution of jump, is printed at the console: 

$ e9tool -M jmp -P print xterm 

E9tool frontend communicate with the backend, e9patch through a client 

server architecture. The E9Patch tool uses the JSON-RPC (version 2.0) as its API. 

Basically, the E9Patch tool expects a stream of JSON-RPC messages which describe 

which binary to rewrite and how to rewrite it. These JSON-RPC messages are fed 

from a frontend tool, such as E9Tool, but this design means that multiple different 

frontends can be supported. The choice of JSON-RPC as the API also means that the 
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frontend can be implemented in any programming language, including C++, python 

or Rust. 

By design, E9Patch tool will do very little parsing or analysis of the input 

binary file. Instead, the analysis/parsing is left to the frontend, and E9Patch relies on 

the frontend to supply all necessary information in order to rewrite the binary. 

Specifically, the frontend must specify: 

 

• The file offsets, virtual addresses and size of instructions in the input 

binary. 

• The file offsets of the patch location. 

• The templates for the trampolines to be used by the rewritten binary. 

• Any additional data/code to be inserted into the rewritten binary. 

The main JSON-RPC messages are: 

• Binary Message: begins the patching process. It must be the first 

message sent to E9Patch. The message specifies the type of the file 

(.so or executable) and the path name of the file. 

• Trampoline Message: Used to specify the template of the trampoline 

when a patch location is matched. 

• Reserve Message: Used to reserve memory sections for code and data 

in the output file. 

• Instruction Message: The message specifies a single instruction in the 

input file, defines the virtual address of the instruction, its size, and its 

offset in the binary. 

• Patch Message: instruct e9patch to patch an instruction already 

declared by the instruction message, it also specifies the trampoline 

template to use. 

• Options Message: passes command-line arguments through a JSON 

message. 

• Emit Message: Ends the process by specifying the name and the type 

of the output file. 

This work will rely on the capabilities provided by the default frontend tool (e9tool) 

to implement our solution instead of using a custom frontend tool. 

2.4.1.3 Matching the patch location 
To replace a function known to have a stack’s buffer overflow bug, we first 

need to identify its location, specifically the file’s offset of the call instruction that 

changes control flow to the block of that function. In the context of C language 

programming, the call instruction may refer to either the address of the flawed 

function if it is statically linked, or the address of a Procedural Linkage Table (PLT) 

routine if the function is dynamically linked (see section 1.3.2.1). 
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E9tool provides a matching language which specifies what instructions should be 

patched by the corresponding patch. Matchings are specified by the (--match 

MATCH) or (-M MATCH) command-line option. The form of a matching (MATCH) is a 

Boolean expression of TESTS using a specific high-level grammar. The user can 

combine a set of tests using common logical operators. 

Tests will be verified against every instruction in the input binary, if they return a 

true Boolean value, this instruction is considered as a patch location. 

A test can be formed using variables. A variable evaluates to some specific 

property/attribute of the underlying instruction, defined using the following 

grammar: 

VARIABLE ::= [ SPECIFIER . ] ATTRIBUTE 

Two important attributes are used in our use of the tool, the first is the call attribute, 

this is a Boolean attribute evaluated as true for call instructions and as false 

otherwise. The second attribute is target, this has an integer type, it can be 

compared with the address of a symbol statically known in the binary. Instructions 

that call or jump to the specified target will be matched. 

Thus, matching an instruction that call strcpy() function require a matching 

expression with the following form: 

'call and target == &strcpy' 

The ‘&’ symbol used in this matching expression will be parsed by the frontend 

e9tool as an address operator, &Name is specified in the documentation of the tool 

as the runtime address of the named section/symbol/PLT/GOT entry. 

 

 

 

 

 

2.4.1.4 The patching language 
The patch language specifies how to patch matching instructions from the input 

binary. Patches are specified using the (--patch PATCH) or (-P PATCH) command-line 

option, and must be paired with one or more matchings. The basic form of a patch 

(PATCH) uses the following high-level grammar: 

PATCH ::= [ POSITION ] TRAMPOLINE 

POSITION ::= before 

| replace 
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| after 

TRAMPOLINE ::= empty 

| break 

| trap 

| exit(CODE) 

| signal(SIG) 

| print 

| CALL 

| if CALL break 

| if CALL goto 

| plugin(NAME).patch() 

A patch is an optional position followed by a trampoline. The trampoline represents 

code that will be executed when control-flow reaches the matching instruction. The 

trampoline can be either a built-in trampoline, a call trampoline, or a trampoline 

defined by a plugin. 

The position specifier can take one of the following values: 

• before: The trampoline will be executed before the matching instruction. That is, 

the trampoline is an instrumentation. Which means, the matched instruction will be 

executed after the execution of all the instructions forming the trampoline. 

• replace: The trampoline replaces the matching instruction. In this case the 

instruction that is considered as a patch location will be omitted in the patched 

binary. 

• after: The trampoline is executed after the matching instruction. 

2.4.1.5 Built-in trampolines 
Those are the trampolines provided by e9tool and used for multiple purposes, 

following is a list of built-in trampolines and their purposes: 

• empty: is the empty trampoline with no instructions. Control-flow is still redirected 

to/from empty trampolines, and this can be used to establish a baseline for 

benchmarking.  

• break: immediately returns from the trampoline back to the main program.  

• trap: executes a single TRAP (int3) instruction.  

• exit(CODE): will immediately exit from the program with status CODE.  
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• signal(SIG): will raise signal SIG in the current thread (equivalent to kill(gettid(), 

SIG)). 

 • print: will print the assembly representation of the matching instruction to stderr. 

This can be used for testing and debugging. 

2.4.1.6 Custom trampolines  
By developing a custom frontend tool that uses the API of e9patch, one can have a 

absolute flexibility on the way of developing trampolines. This will also make the tool 

able to be integrated in development environment, testing projects and so on. 

The e9tool frontend provides multiple options to develop and integrate trampolines, 

thus, to implement a patch. One possibility is to use something called plugins, an 

E9Tool plugin is a shared object that exports specific functions. These functions will 

be invoked by E9Tool at different stages of the patching process. Some tasks, such as 

disassembly, will be automatically handled by the E9Tool frontend. 

 

The E9Tool plugin API is simple and consists of the following functions: 

 

e9_plugin_init(const Context *cxt): Called once before the binary is disassembled. 

e9_plugin_event(const Context *cxt, Event event): Called once for each event (see 

the Event enum). 

e9_plugin_match(const Context *cxt): Called once for each match location. 

e9_plugin_code(const Context *cxt): Called once per trampoline template (code). 

e9_plugin_data(const Context *cxt): Called once per trampoline template (data). 

e9_plugin_patch(const Context *cxt): Called for each patch location. 

e9_plugin_fini(const Context *cxt): Called once after all instructions have been 

patched.  

Each function takes a cxt argument of type Context defined in e9plugin.h. 

Plugins are invoked using the E9Tool --match/-M or --patch/-P options. For example: 

 

   $ g++ -std=c++11 -fPIC -shared -o myPlugin.so myPlugin.cpp -I src/e9tool/ 

   $./e9tool -M 'plugin(myPlugin).match() > 0x333' -P 'plugin(myPlugin).patch()' xterm 

Where myPlugin.so is the shared object which defines the functions that e9tool will 

use in the course of each phase of the rewriting process. 

However, our use of the tool takes advantage of a simple mechanism called call 

trampoline. A call trampoline calls a user-defined function that can be implemented 
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in a high-level programming language such as C or C++. Call trampolines are the main 

way of implementing custom patches using E9Tool. The syntax for a call trampoline 

is as follows: 

CALL ::= FUNCTION [ ABI ] ARGS @ BINARY 

ABI ::= < clean | naked > 

ARGS ::= ( ARG , ... )  

The call trampoline specifies that the trampoline should call function FUNCTION 

from the binary BINARY with the arguments ARGS. To use a call trampoline, the 

tool’s manual dictates:  

1. Implement the desired patch as a function using the C or C++ programming 

language.  

2. Compile the patch program using the special e9compile.sh script to generate a 

patch binary.  

3. Use the E9Tool frontend to call the patch function from the patch binary at the 

desired locations. 

E9Tool will handle all of the low-level details, such as loading the patch binary into 

memory, passing the arguments to the function, and saving/restoring the CPU state. 

The e9compile.sh script is a gcc wrapper that ensures the generated binary is 

compatible with E9Tool. 

Call trampolines support two Application Binary Interfaces (ABIs). 

• clean: saves/restores the CPU state and is compatible with C/C++, this ABI causes 

the same behavior defined by system V ABI (see section 1.4.2). 

• naked: saves/restores registers corresponding to arguments only and give more 

flexibility to the trampoline developer. 

2.4.1.7 Call Trampoline 
With Call Trampoline method, a trampoline is a function coded in the C or C++ 

language. This function may or may not be fed data. The data can be static, fixed 

values determined when the patch is programmed, or it can depend on the 

execution state of the patched program. 

e9tool allows passing arguments by value to functions called by call trampolines. This 

is achieved by specifying the argument types directly. For instance, the syntax to 

pass the current value of the instruction pointer (%rip) to a function looks like this: 

$./e9tool -M ... -P 'func(rip)@example' xterm 

In this example, func is called with the value of %rip as an argument, and the 

corresponding C function can be defined as follows: 
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void func(const void *rip) { 

    // RIP register value as an argument 

} 

The call trampoline can support up to eight arguments, and these arguments can be 

of various types such as integers, strings, addresses, and more. 

e9tool also supports passing arguments by pointer, allowing for more dynamic 

interaction with the program's state. This feature is particularly useful for modifying 

values at runtime. For example, consider a function that increments the value 

pointed to by a pointer: 

void inc(int64_t *ptr) { 

    *ptr += 1; 

} 

We can define a call trampoline to invoke this function and pass the address of a 

register (e.g., %rax) as follows: 

$ e9compile.sh example.c 

$ e9tool -M ... -P 'inc(&rax)@example' xterm 

In this case, the value of %rax will be incremented each time inc is called. Thus, every 

time an instruction is matched and the rewriting phase is reached the content of 

%rax at that moment will be incremented. The behavior of pointers depends on the 

operand type: 

• Immediate operands: 

point to constant values stored in read-only memory. For example, a constant 

value directly embedded in the matched instruction. The address of the operand 

5 in the instruction: mov eax, 5 can be referenced by pointer when that 

instruction is matched. This can be done by passing the keyword: &mem[2] as an 

argument to the trampoline.  

• Register operands: 

Point to temporary locations holding the register values. This is a reference to a 

CPU register that holds data. For example, in the instruction mov eax, ebx, both 

eax and ebx are register operands. The only way to manipulate the value of a 

register at runtime is to pass the address of that register as an argument to the 

trampoline. 

• Memory operands: 

Provide the exact runtime pointer value calculated by the operand itself. This is a 

reference to a location in memory. The operand specifies an address from which 
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data is fetched or to which data is stored. For example, in the instruction mov 

eax, [ebx], [ebx] is a memory operand referring to the memory address 

contained in ebx. 

 

 

2.4.1.8 Implementation 
It is common to find that the ELF executable file of a C program is stripped. 

ELF stripping is the process of removing unnecessary information from an Executable 

and Linkable Format (ELF) file, such as debugging symbols and relocation 

information, to reduce its size and improve performance. This is typically done using 

the strip Linux command. 

If strcpy() function (or a similar function) is dynamically linked to the vulnerable 

program, then our solution would work even if the executable ELF file is stripped 

(e.g., the function symbol is presented in the PLT section). If the function is statically 

linked to the program to-be-patched, then the ELF executable file must not be 

stripped in order to patch it. 

Using e9patch we can substitute whatever unsafe function lacking bounds checking. 

For the sake of a concrete example, we chose to apply the method on a specific 

function. If applied automatically, this method does not protect against the 

corruption of local variables. Applying e9patch automatically means that no manual 

effort is needed, the tool will replace strcpy() with strncpy(), providing to strncpy a 

size which is also computed automatically, this is the value contained in rbp minus 

the value contained in rdi (see Figure 38). 

Though the implementation only reinforces the calling conventions, it can maintain 

the integrity of local variables if we accompany it with static analysis of the program. 

For example by extracting the size of each destination buffer used by strcpy() 

function one can implements a trampoline that replaces the function with strncpy() 

function and specifies the appropriate size as an argument to strncpy.  

This is an efficient way to enforce the integrity of C program’s control flow. 

Consider the program in Figure 37 which uses the unsafe strcpy() function: 

#include <stdio.h> 

#include <string.h> 

void printName(char* buffer) { 

char name[16]; 

//la fonction a remplacer 

strcpy(name, buffer); 
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printf("Hello %s\n", name); 

} 

int main(int argc, char* argv[]) { 

if(argc > 1) printName(argv[1]); 

return 0; 

} 

Figure 37: The vulnerable program 

 

The tool will replace strcpy(dest, src) function with the safer strncpy(dest, src, size) 

function, which is considered more secure due to its explicit size determination. 

The patch is created in the form of a function (see Figure 38) and compiled in a 

specific way compatible with the e9tool. This use of the tool is explained in section 

2.4.1.8, a method known as Call Trampoline. 

 

#include "/e9patch/examples/stdlib.c" 

 

void patch (void *rbp,void *rdi ,char 

*rsi){ 

long size= (long) rbp - (long) rdi; 

strncpy(rdi,rsi,size-1); 

} 

Figure 38: Trampoline implementation 

The values of the RBP and RDI registers are passed by value to calculate the available 

space between the buffer and the address where the previous frame address is 

stored. 

The tool comes with a compiler wrapper, a script that directs GCC to generate a 

compatible ELF file. 

The compilation is done by the following command in a Linux environment: 

$ e9compile.sh patch.c 

After preparing the patch, we instructed e9tool to match a call to strcpy() and 

replace it with the trampoline following the -P flag. This is done by the following 

command: 
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${e9}/e9tool -s -o file -O0 -M 'call and target == &strcpy' -P 'replace 

patch(rbp,rdi,rsi)@newpatch' --debug ../strippednoCanari 

Where ${e9}/e9tool substituted by the file path of the tool. 

-s flag instruct e9tool to hardcode the trampoline in the output file, instead of using 

a custom loader, so, when disassembling the final result we can see the difference 

with the former version of the ELF file. 

-O0 option, disables any optimization technique to reduce the size of the file. 

The result a is a program (i.e., the ELF named file) identical to the original program 

except that the function strcpy() is replaced by its equivalent strncpy(). 

To illustrate the difference between the input file and the output file, Figure 39 

highlights the patch location in the original file, that will be matched by e9tool. 

 

Figure 39: The main program before applying the patch process 
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After being matched, the tool will rewrite the call instruction with a jump to the 

trampoline which is appended at the end of the binary along with the 

implementation of the function strncpy. 

The tool also changes the entry point of the program to a specific routine, 

responsible for allocating space in memory for the trampoline and the strncpy code 

[19]. 

In the output binary, a jump instruction replaces the call instruction, so when RIP will 

point to this memory location, control flow will be passed to the trampoline. The 

trampoline starts by saving the state of the CPU (register’s values) unless a naked ABI 

is specified as argument to the trampoline. The trampoline sets the arguments for 

the strncpy function, including the size to be copied which is the distance between 

the location pointed to by RDI and the location pointed to by the RBP register, 

calculated at runtime. Then, a call instruction in the trampoline block changes 

control flow to the block of strncpy function. After the execution of strncpy code, 

control flow returns to the trampoline to restore the value of any saved register and 

returns to the main program (see Figure 40). 

 

Figure 40: The workings of the patched program 
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Figure 41 shows the instruction in the block of printName function that calls the 

function strcpy. 

 

Figure 41: The assembly representation of printName before the patching process 

The output of e9patch rewrites this instruction by a jmp instruction to the 

trampoline as Figure 42 shows: 

 

Figure 42: A substituted call instruction 

 

 

Triggering an out-of-bounds memory writing by providing a long input to the original 

program gave a segmentation fault error mentioned at Figure 43: 
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Figure 43: Executing the flawed program 

Providing the same input to the patched program shows the expected safe behavior:  

 

 

Figure 44: Executing the patched program 

 

2.5 Guidelines for secure programming 
MSC24-C is a specific guideline within the CERT C Secure Coding Standard, 

which provides rules and recommendations for writing secure C code [22]. The CERT 

C Secure Coding Standard is a set of guidelines developed by the CERT Coordination 

Center at Carnegie Mellon University to help programmers write more secure and 

reliable C code. MSC24-C specifically addresses "Be careful with the use of setjmp() 

and longjmp()", emphasizing the potential security risks associated with these 

functions and providing recommendations for using them safely. 

This guideline is published online, bellow are their important advices to 

programmers in the context of our work:  

Do not use deprecated or obsolescent functions when more secure equivalent 

functions are available. Deprecated functions are defined by the C Standard. 

Obsolescent functions are defined by this recommendation. 

 

 

Old 

 

New 

Obsolescent 

Function 

Recommended 

Alternative 

bsearch() bsearch_s() 

fprintf() fprintf_s() 

fscanf() fscanf_s() 



69            Functions Lacking Bounds Checking 
 

 

Old 

 

New 

Obsolescent 

Function 

Recommended 

Alternative 

fwprintf() fwprintf_s() 

fwscanf() fwscanf_s() 

getenv() getenv_s() 

gmtime() gmtime_s() 

localtime() localtime_s() 

mbsrtowcs() mbsrtowcs_s() 

mbstowcs() mbstowcs_s() 

memcpy() memcpy_s() 

memmove() memmove_s() 

printf() printf_s() 

qsort() qsort_s() 

scanf() scanf_s() 

snprintf() snprintf_s() 

sprintf() sprintf_s() 

sscanf() sscanf_s() 

strcat() strcat_s() 

strcpy() strcpy_s() 
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Old 

 

New 

Obsolescent 

Function 

Recommended 

Alternative 

strerror() strerror_s() 

strlen() strnlen_s() 

strncat() strncat_s() 

strncpy() strncpy_s() 

strtok() strtok_s() 

swprintf() swprintf_s() 

swscanf() swscanf_s() 

vfprintf() vfprintf_s() 

vfscanf() vfscanf_s() 

vfwprintf() vfwprintf_s() 

vfwscanf() vfwscanf_s() 

vprintf() vprintf_s() 

vscanf() vscanf_s() 

vsnprintf() vsnprintf_s() 

vsprintf() vsprintf_s() 

vsscanf() vsscanf_s() 

vswprintf() vswprintf_s() 
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Old 

 

New 

Obsolescent 

Function 

Recommended 

Alternative 

vswscanf() vswscanf_s() 

vwprintf() vwprintf_s() 

vwscanf() vwscanf_s() 

wcrtomb() wcrtomb_s() 

wcscat() wcscat_s() 

wcscpy() wcscpy_s() 

wcslen() wcsnlen_s() 

wcsncat() wcsncat_s() 

wcsncpy() wcsncpy_s() 

wcsrtombs() wcsrtombs_s() 

wcstok() wcstok_s() 

wcstombs() wcstombs_s() 

wctomb() wctomb_s() 

wmemcpy() wmemcpy_s() 

wmemmove() wmemmove_s() 

wprintf() wprintf_s() 

wscanf() wscanf_s() 

Table 45: Deprecated functions and their alternative 
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2.6 Conclusion 
Using functions lacking bounds checking carefully or replace them with secure 

functions will protect the safety of the stack memory region at an early stage. Thus, 

cultivating developers of security related aspects is important for developing a 

secure software.   
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General conclusion and perspectives 

 

The security of the stack memory must not depend on one line of defense, as 

we discovered throughout the second chapter, there is no one security measure that 

fits every situation. It is the combination of a set of defense mechanisms that makes 

our stack memory robust against attacks. The more defenses are there the more 

secure the stack will be. 

In this work, I believe that the best solution to stack-based buffer overflow caused by 

uncareful use of functions lacking bounds checking is to replace the function with 

one that do consider buffer’s bounds. This can be done either manually when the 

source code is available or using a binary rewriting technique like the one presented 

at the end of the second section.  
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